首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   755篇
  免费   64篇
电工技术   2篇
化学工业   361篇
金属工艺   8篇
机械仪表   13篇
建筑科学   27篇
能源动力   20篇
轻工业   169篇
水利工程   4篇
石油天然气   2篇
无线电   31篇
一般工业技术   97篇
冶金工业   8篇
自动化技术   77篇
  2024年   3篇
  2023年   28篇
  2022年   89篇
  2021年   99篇
  2020年   37篇
  2019年   28篇
  2018年   42篇
  2017年   27篇
  2016年   44篇
  2015年   30篇
  2014年   34篇
  2013年   57篇
  2012年   36篇
  2011年   59篇
  2010年   32篇
  2009年   34篇
  2008年   30篇
  2007年   18篇
  2006年   21篇
  2005年   9篇
  2004年   11篇
  2003年   13篇
  2002年   8篇
  2001年   2篇
  2000年   1篇
  1999年   8篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1985年   2篇
  1980年   1篇
排序方式: 共有819条查询结果,搜索用时 11 毫秒
11.
Engineering electrode nanostructures is critical in developing high‐capacity, fast rate‐response, and safe Li‐ion batteries. This study demonstrates the synthesis of orthorhombic Nb2O5@Nb4C3Tx (or @Nb2CTx) hierarchical composites via a one‐step oxidation —in flowing CO2 at 850 °C —of 2D Nb4C3Tx (or Nb2CTx) MXene. The composites possess a layered architecture with orthorhombic Nb2O5 nanoparticles decorated uniformly on the surface of the MXene flakes and interconnected by disordered carbon. The composites have a capacity of 208 mAh g?1 at a rate of 50 mA g?1 (0.25 C) in 1–3 V versus Li+/Li, and retain 94% of the specific capacity with 100% Coulombic efficiency after 400 cycles. The good electrochemical performances could be attributed to three synergistic effects: (1) the high conductivity of the interior, unoxidized Nb4C3Tx layers, (2) the fast rate response and high capacity of the external Nb2O5 nanoparticles, and (3) the electron “bridge” effects of the disordered carbon. This oxidation method was successfully extended to Ti3C2Tx and Nb2CTx MXenes to prepare corresponding composites with similar hierarchical structures. Since this is an early report on producing this structure, there is much room to push the boundaries further and achieve better electrochemical performance.  相似文献   
12.
The thermal performances of nanocomposite layers formed by Single-walled Carbon Nanotubes (SWCNT) dispersed in 2 different kind of polydimethyl-siloxane (PDMSO) matrices has been investigated by measuring the thermal resistance under conditions similar to the ones used for thermal management in microelectronics. A series of nanocomposite samples with thickness in the range 25 microm(-1) cm have been tested. The nanocomposites were prepared varying the amounts of nanotubes embedded in the matrix (from 0.1 to 5%w). In some cases also microsized graphites were mixed to the nanotube's fillers. For 25 micron thick layers, the thermal resistance of the neat silicone specimen can be reduced of 54% with the addition of 2%w carbon nanotubes. The variation of thermal conductivity as a function of the SWCNT's loading is reported and discussed. Furthermore the dispersion's effects of the nanotubes in the layers and the effects on the realization of a net-like system have been investigated.  相似文献   
13.
14.
White spruce (Picea glauca) emits monoterpenes that function as defensive signals and weapons after herbivore attack. We assessed the effects of drought and methyl jasmonate (MeJA) treatment, used as a proxy for herbivory, on monoterpenes and other isoprenoids in P. glauca. The emission of monoterpenes was significantly increased after MeJA treatment compared to the control, but drought suppressed the MeJA-induced increase. The composition of the emitted blend was altered strongly by stress, with drought increasing the proportion of oxygenated compounds and MeJA increasing the proportion of induced compounds such as linalool and (E)-β-ocimene. In contrast, no treatment had any significant effect on the levels of stored monoterpenes and diterpenes. Among other MEP pathway-derived isoprenoids, MeJA treatment decreased chlorophyll levels by 40%, but had no effect on carotenoids, while drought stress had no impact on either of these pigment classes. Of the three described spruce genes encoding 1-deoxy-D-xylulose-5-phosphate synthase (DXS) catalyzing the first step of the MEP pathway, the expression of only one, DXS2B, was affected by our treatments, being increased by MeJA and decreased by drought. These findings show the sensitivity of monoterpene emission to biotic and abiotic stress regimes, and the mediation of the response by DXS genes.  相似文献   
15.
Microgravity impairs tissue organization and critical pathways involved in the cell–microenvironment interplay, where fibroblasts have a critical role. We exposed dermal fibroblasts to simulated microgravity by means of a Random Positioning Machine (RPM), a device that reproduces conditions of weightlessness. Molecular and structural changes were analyzed and compared to control samples growing in a normal gravity field. Simulated microgravity impairs fibroblast conversion into myofibroblast and inhibits their migratory properties. Consequently, the normal interplay between fibroblasts and keratinocytes were remarkably altered in 3D co-culture experiments, giving rise to several ultra-structural abnormalities. Such phenotypic changes are associated with down-regulation of α-SMA that translocate in the nucleoplasm, altogether with the concomitant modification of the actin-vinculin apparatus. Noticeably, the stress associated with weightlessness induced oxidative damage, which seemed to concur with such modifications. These findings disclose new opportunities to establish antioxidant strategies that counteract the microgravity-induced disruptive effects on fibroblasts and tissue organization.  相似文献   
16.
Laryngotracheal stenosis (LTS) is a complex and heterogeneous disease whose pathogenesis remains unclear. LTS is considered to be the result of aberrant wound-healing process that leads to fibrotic scarring, originating from different aetiology. Although iatrogenic aetiology is the main cause of subglottic or tracheal stenosis, also autoimmune and infectious diseases may be involved in causing LTS. Furthermore, fibrotic obstruction in the anatomic region under the glottis can also be diagnosed without apparent aetiology after a comprehensive workup; in this case, the pathological process is called idiopathic subglottic stenosis (iSGS). So far, the laryngotracheal scar resulting from airway injury due to different diseases was considered as inert tissue requiring surgical removal to restore airway patency. However, this assumption has recently been revised by regarding the tracheal scarring process as a fibroinflammatory event due to immunological alteration, similar to other fibrotic diseases. Recent acquisitions suggest that different factors, such as growth factors, cytokines, altered fibroblast function and genetic susceptibility, can all interact in a complex way leading to aberrant and fibrotic wound healing after an insult that acts as a trigger. However, also physiological derangement due to LTS could play a role in promoting dysregulated response to laryngo-tracheal mucosal injury, through biomechanical stress and mechanotransduction activation. The aim of this narrative review is to present the state-of-the-art knowledge regarding molecular mechanisms, as well as mechanical and physio-pathological features behind LTS.  相似文献   
17.
The present investigation aimed to explore the intact proteome of tissues of pediatric brain tumors of different WHO grades and localizations, including medulloblastoma, pilocytic astrocytoma, and glioblastoma, in comparison with the available data on ependymoma, to contribute to the understanding of the molecular mechanisms underlying the onset and progression of these pathologies. Tissues have been homogenized in acidic water–acetonitrile solutions containing proteases inhibitors and analyzed by LC–high resolution MS for proteomic characterization and label-free relative quantitation. Tandem MS spectra have been analyzed by either manual inspection or software elaboration, followed by experimental/theoretical MS fragmentation data comparison by bioinformatic tools. Statistically significant differences in protein/peptide levels between the different tumor histotypes have been evaluated by ANOVA test and Tukey’s post-hoc test, considering a p-value > 0.05 as significant. Together with intact protein and peptide chains, in the range of molecular mass of 1.3–22.8 kDa, several naturally occurring fragments from major proteins, peptides, and proteoforms have been also identified, some exhibiting proper biological activities. Protein and peptide sequencing allowed for the identification of different post-translational modifications, with acetylations, oxidations, citrullinations, deamidations, and C-terminal truncations being the most frequently characterized. C-terminal truncations, lacking from two to four amino acid residues, particularly characterizing the β-thymosin peptides and ubiquitin, showed a different modulation in the diverse tumors studied. With respect to the other tumors, medulloblastoma, the most frequent malignant brain tumor of the pediatric age, was characterized by higher levels of thymosin β4 and β10 peptides, the latter and its des-IS form particularly marking this histotype. The distribution pattern of the C-terminal truncated forms was also different in glioblastoma, particularly underlying gender differences, according to the definition of male and female glioblastoma as biologically distinct diseases. Glioblastoma was also distinguished for the peculiar identification of the truncated form of the α-hemoglobin chain, lacking the C-terminal arginine, and exhibiting oxygen-binding and vasoconstrictive properties different from the intact form. The proteomic characterization of the undigested proteome, following the top-down approach, was challenging to originally investigate the post-translational events that differently characterize pediatric brain tumors. This study provides a contribution to elucidate the molecular profiles of the solid tumors most frequently affecting the pediatric age, and which are characterized by different grades of aggressiveness and localization.  相似文献   
18.
19.
The overproduction of eumelanin leads to a panel of unaesthetic hyper-pigmented skin diseases, including melasma and age spots. The treatment of these diseases often requires the use of tyrosinase inhibitors, which act as skin whitening agents by inhibiting the synthesis of eumelanin, with harmful side effects. We report here that laccase from Trametes versicolor in association with a cocktail of natural phenol redox mediators efficiently degraded eumelanin from Sepia officinalis, offering an alternative procedure to traditional whitening agents. Redox mediators showed a synergistic effect with respect to their single-mediator counterpart, highlighting the beneficial role of the cocktail system. The pro-oxidant DHICA sub-units of eumelanin were degraded better than the DHI counterpart, as monitored by the formation of pyrrole-2,3,5-tricarboxylic acid (PTCA) and pyrrole-2,3-dicarboxylic acid (PDCA) degradation products. The most effective laccase-mediated cocktail system was successively applied in a two-component prototype of a topical whitening cream, showing high degradative efficacy against eumelanin.  相似文献   
20.
Accumulating data suggest that the brain undergoes various changes during aging. Among them are loss of both white and gray matter, neurons and synapses degeneration, as well as oxidative, inflammatory, and biochemical changes. The above-mentioned age-related features are closely related to autophagy and mitochondria. Therefore, we aimed to reveal the most peculiar morphological features of brain nervous tissue and to characterize the expression of autophagy and mitochondrial immunohistochemical biomarkers in neurons of different human brain zones during aging. Counting the number of neurons as well as Microtubule-associated proteins 1A/1B light chain 3B (LC3B), Heat shock protein 70 (HSP70), Lysosome-associated membrane protein type 2A (LAMP2A), Alpha subunit of ATP synthase (ATP5A), and Parkinson disease protein 7 (DJ1) immunohistochemical staining were performed on FFPE samples of human prefrontal cortex, corpus striatum, and hippocampus obtained from autopsy. Statistical analysis revealed a loss of neurons in the studied elderly group in comparison to the young group. When the expression of macroautophagy (LC3B), chaperon-mediated autophagy (HSP70, LAMP2A), and mitochondrial respiratory chain complex V (ATP5A) markers for the young and elderly groups were compared, the latter was found to have a significantly higher rate of optical density, whilst there was no significance in DJ1 expression. These findings, while preliminary, suggest that both autophagy and mitochondria are involved in neuronal maintenance during aging and could indicate their potential role in adaptive mechanisms that occur in aging.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号