首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   939篇
  免费   76篇
电工技术   7篇
综合类   1篇
化学工业   303篇
金属工艺   15篇
机械仪表   16篇
建筑科学   38篇
矿业工程   2篇
能源动力   31篇
轻工业   230篇
水利工程   15篇
石油天然气   5篇
无线电   59篇
一般工业技术   123篇
冶金工业   69篇
原子能技术   2篇
自动化技术   99篇
  2024年   8篇
  2023年   14篇
  2022年   50篇
  2021年   65篇
  2020年   32篇
  2019年   49篇
  2018年   43篇
  2017年   34篇
  2016年   42篇
  2015年   30篇
  2014年   51篇
  2013年   90篇
  2012年   81篇
  2011年   90篇
  2010年   49篇
  2009年   45篇
  2008年   37篇
  2007年   43篇
  2006年   29篇
  2005年   14篇
  2004年   13篇
  2003年   11篇
  2002年   7篇
  2001年   11篇
  2000年   4篇
  1999年   8篇
  1998年   16篇
  1997年   6篇
  1996年   6篇
  1995年   3篇
  1994年   7篇
  1993年   2篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   5篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1978年   1篇
  1977年   1篇
  1972年   1篇
排序方式: 共有1015条查询结果,搜索用时 15 毫秒
31.
32.
33.

1 Scope

Mannan oligosaccharides (MOS) have proven effective at improving growth performance, while also reducing hyperlipidemia and inflammation. As atherosclerosis is accelerated both by hyperlipidemia and inflammation, we aim to determine the effect of dietary MOS on atherosclerosis development in hyperlipidemic ApoE*3‐Leiden.CETP (E3L.CETP) mice, a well‐established model for human‐like lipoprotein metabolism.

2 Methods and results

Female E3L.CETP mice were fed a high‐cholesterol diet, with or without 1% MOS for 14 weeks. MOS substantially decreased atherosclerotic lesions up to 54%, as assessed in the valve area of the aortic root. In blood, IL‐1RA, monocyte subtypes, lipids, and bile acids (BAs) were not affected by MOS. Gut microbiota composition was determined using 16S rRNA gene sequencing and MOS increased the abundance of cecal Bacteroides ovatus. MOS did not affect fecal excretion of cholesterol, but increased fecal BAs as well as butyrate in cecum as determined by gas chromatography mass spectrometry.

3 Conclusion

MOS decreased the onset of atherosclerosis development via lowering of plasma cholesterol levels. These effects were accompanied by increased cecal butyrate and fecal excretion of BAs, presumably mediated via interactions of MOS with the gut microbiota.  相似文献   
34.
35.
The chemical industry is one of the key industrial sectors in Germany and at the same time one of the largest consumers of energy and raw materials. A successful energy transition and the development of a circular economy can only succeed if they are actively supported and shaped by the chemical industry – through the redesign of existing production processes and the exploration and implementation of new process routes. The challenge is to realize this transformation within a very short time and for many production processes, whereby a much larger number of process routes must be explored. Digital technologies are key to master this transformation towards more sustainability, climate, and environmental protection. The KEEN project aims to explore and leverage artificial intelligence (AI) opportunities in process industry. The newly developed AI methods are tested wherever possible in real working environments and production plants to prove the economic benefit, applicability, and reliability of the methods and technologies.  相似文献   
36.
The potential of the natural chabazite for the selective catalytic reduction (SCR) of NOx with NH3 is evaluated in the present work. Activity tests were performed under technically relevant reaction and temperature conditions for the fresh and hydrothermally aged catalysts. The natural chabazite before and after alkaline removal as well as after iron and copper addition were compared. The structural as well as surface and bulk properties were elucidated by a variety of complementary characterization techniques, i.e. XRD, XPS, EPR, BET, NH3‐TPD, ex situ and in situ XAS. The results indicate that an important facet for using the natural chabazite for the standard and fast SCR reactions is the removal of alkaline metals, which at the same time also leads to a partial change of the structure and the size of the iron‐containing particles. The performance and especially the hydrothermal stability can be further improved by copper addition.  相似文献   
37.
Exposure to sunlight is the major cause of skin cancer. Ultraviolet radiation (UV) from the sun causes damage to DNA by direct absorption and can cause skin cell death. UV also causes production of reactive oxygen species that may interact with DNA to indirectly cause oxidative DNA damage. UV increases accumulation of p53 in skin cells, which upregulates repair genes but promotes death of irreparably damaged cells. A benefit of sunlight is vitamin D, which is formed following exposure of 7-dehydrocholesterol in skin cells to UV. The relatively inert vitamin D is metabolized to various biologically active compounds, including 1,25-dihydroxyvitamin D3. Therapeutic use of vitamin D compounds has proven beneficial in several cancer types, but more recently these compounds have been shown to prevent UV-induced cell death and DNA damage in human skin cells. Here, we discuss the effects of vitamin D compounds in skin cells that have been exposed to UV. Specifically, we examine the various signaling pathways involved in the vitamin D-induced protection of skin cells from UV.  相似文献   
38.
Biallelic pathogenic variants in the SEC23B gene cause congenital dyserythropoietic anemia type II (CDA II), a rare hereditary disorder hallmarked by ineffective erythropoiesis, hemolysis, erythroblast morphological abnormalities, and hypo-glycosylation of some red blood cell membrane proteins. Abnormalities in SEC23B, which encodes the homonymous cytoplasmic COPII (coat protein complex II) component, disturb the endoplasmic reticulum to Golgi trafficking and affect different glycosylation pathways. The most harmful complication of CDA II is the severe iron overload. Within our case series (28 CDA II patients), approximately 36% of them exhibit severe iron overload despite mild degree of anemia and slightly increased levels of ERFE (the only erythroid regulator of hepcidin suppression). Thus, we hypothesized a direct role of SEC23B loss-of-function in the pathomechanism of hepatic iron overload. We established a hepatic cell line, HuH7, stably silenced for SEC23B. In silenced cells, we observed significant alterations of the iron status, due to both the alteration in BMP/SMADs pathway effectors and a reduced capability to sense BMP6 stimulus. We demonstrated that the loss-of-function of SEC23B is responsible of the impairment in glycosylation of the membrane proteins involved in the activation of the BMP/SMADs pathway with subsequent hepcidin suppression. Most of these data were confirmed in another hepatic cell line, HepG2, stably silenced for SEC23B. Our findings suggested that the pathogenic mechanism of iron overload in CDA II is associated to both ineffective erythropoiesis and to a specific involvement of SEC23B pathogenic variants at hepatic level. Finally, we demonstrated the ability of SEC23B paralog, i.e., SEC23A, to rescue the hepcidin suppression, highlighting the functional overlap between the two SEC23 paralogs in human hepatic cells.  相似文献   
39.
The esterification of oleic acid and methanol using sulfuric acid as a homogeneous catalyst is studied in reactive‐separation systems. The conversion of the free fatty acid was investigated in two different experiments with the molar ratio of methanol/oleic acid, amount of catalyst, temperature, and reaction time as variables. The conversion of the free fatty acid was found to depend strongly on the molar ratio of methanol/oleic acid. The reaction time had a direct effect on the conversion of the free fatty acid, and this conversion decreased with higher temperature. These results were valuable for a preliminary study on biodiesel production, using an acid homogeneous catalyst in a reactive dividing‐wall distillation column.  相似文献   
40.
We report a facile strategy to synthesize water-soluble, fluorescent gold nanoclusters (AuNCs) in one step by using a mild reductant, tetrakis(hydroxymethyl)phosphonium chloride (THPC). A zwitterionic functional ligand, D-penicillamine (DPA), as a capping agent endowed the AuNCs with excellent stability in aqueous solvent over the physiologically relevant pH range. The DPA-capped AuNCs displayed excitation and emission bands at 400 and 610 nm, respectively; the fluorescence quantum yield was 1.3%. The effect of borohydride reduction on the optical spectra and X-ray photoelectron spectroscopy (XPS) results indicated that the AuNC luminescence is closely related to the presence of Au(I) on their surfaces. In a first optical imaging application, we studied internalization of the AuNCs by live HeLa cells using confocal microscopy with two-photon excitation. A cell viability assay revealed good biocompatibility of these AuNCs. Our studies demonstrate a great potential of DPA-stabilized AuNCs as fluorescent nanoprobes in bioimaging and related applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号