全文获取类型
收费全文 | 248篇 |
免费 | 26篇 |
国内免费 | 1篇 |
专业分类
电工技术 | 5篇 |
综合类 | 1篇 |
化学工业 | 106篇 |
金属工艺 | 6篇 |
机械仪表 | 3篇 |
建筑科学 | 9篇 |
能源动力 | 3篇 |
轻工业 | 44篇 |
水利工程 | 2篇 |
无线电 | 14篇 |
一般工业技术 | 25篇 |
冶金工业 | 25篇 |
自动化技术 | 32篇 |
出版年
2023年 | 11篇 |
2022年 | 20篇 |
2021年 | 17篇 |
2020年 | 8篇 |
2019年 | 13篇 |
2018年 | 23篇 |
2017年 | 12篇 |
2016年 | 15篇 |
2015年 | 16篇 |
2014年 | 5篇 |
2013年 | 18篇 |
2012年 | 12篇 |
2011年 | 23篇 |
2010年 | 15篇 |
2009年 | 11篇 |
2008年 | 7篇 |
2007年 | 4篇 |
2006年 | 9篇 |
2005年 | 7篇 |
2004年 | 3篇 |
2003年 | 2篇 |
2002年 | 2篇 |
2001年 | 1篇 |
2000年 | 2篇 |
1998年 | 5篇 |
1996年 | 3篇 |
1993年 | 1篇 |
1992年 | 1篇 |
1984年 | 1篇 |
1978年 | 1篇 |
1977年 | 5篇 |
1973年 | 2篇 |
排序方式: 共有275条查询结果,搜索用时 0 毫秒
11.
12.
Petra Pavel Stefan Blunder Verena Moosbrugger-Martinz Peter M. Elias Sandrine Dubrac 《International journal of molecular sciences》2022,23(4)
Atopic dermatitis (AD) is a chronic and relapsing inflammatory skin disease in which dry and itchy skin may develop into skin lesions. AD has a strong genetic component, as children from parents with AD have a two-fold increased chance of developing the disease. Genetic risk loci and epigenetic modifications reported in AD mainly locate to genes involved in the immune response and epidermal barrier function. However, AD pathogenesis cannot be fully explained by (epi)genetic factors since environmental triggers such as stress, pollution, microbiota, climate, and allergens also play a crucial role. Alterations of the epidermal barrier in AD, observed at all stages of the disease and which precede the development of overt skin inflammation, manifest as: dry skin; epidermal ultrastructural abnormalities, notably anomalies of the lamellar body cargo system; and abnormal epidermal lipid composition, including shorter fatty acid moieties in several lipid classes, such as ceramides and free fatty acids. Thus, a compelling question is whether AD is primarily a lipid disorder evolving into a chronic inflammatory disease due to genetic susceptibility loci in immunogenic genes. In this review, we focus on lipid abnormalities observed in the epidermis and blood of AD patients and evaluate their primary role in eliciting an inflammatory response. 相似文献
13.
Acute myeloid leukemia (AML) is the most common acute leukemia in adults. The standard of care in medically and physically fit patients is intensive induction therapy. The majority of these intensively treated patients achieve a complete remission. However, a high number of these patients will experience relapse. In patients older than 60 years, the results are even worse. Therefore, new therapeutic approaches are desperately needed. One promising approach in high-risk leukemia to prevent relapse is the induction of the immune system simultaneously or after reduction of the initial tumor burden. Different immunotherapeutic approaches such as allogenic stem cell transplantation or donor lymphocyte infusions are already standard therapies, but other options for AML treatment are in the pipeline. Moreover, the therapeutic landscape in AML is rapidly changing, and in the last years, a number of immunogenic targets structures eligible for specific therapy, risk assessment or evaluation of disease course were determined. For example, leukemia-associated antigens (LAA) showed to be critical as biomarkers of disease state and survival, as well as markers of minimal residual disease (MRD). Yet many mechanisms and properties are still insufficiently understood, which also represents a great potential for this form of therapy. Therefore, targeted therapy as immunotherapy could turn into an efficient tool to clear residual disease, improve the outcome of AML patients and reduce the relapse risk. In this review, established but also emerging immunotherapeutic approaches for AML patients will be discussed. 相似文献
14.
Ulrich Koller Stefan Hainzl Thomas Kocher Clemens Hüttner Alfred Klausegger Christina Gruber Elisabeth Mayr Verena Wally Johann W. Bauer Eva M. Murauer 《International journal of molecular sciences》2015,16(1):1179-1191
Spliceosome-mediated RNA trans-splicing has become an emergent tool for the repair of mutated pre-mRNAs in the treatment of genetic diseases. RNA trans-splicing molecules (RTMs) are designed to induce a specific trans-splicing reaction via a binding domain for a respective target pre-mRNA region. A previously established reporter-based screening system allows us to analyze the impact of various factors on the RTM trans-splicing efficiency in vitro. Using this system, we are further able to investigate the potential of antisense RNAs (AS RNAs), presuming to improve the trans-splicing efficiency of a selected RTM, specific for intron 102 of COL7A1. Mutations in the COL7A1 gene underlie the dystrophic subtype of the skin blistering disease epidermolysis bullosa (DEB). We have shown that co-transfections of the RTM and a selected AS RNA, interfering with competitive splicing elements on a COL7A1-minigene (COL7A1-MG), lead to a significant increase of the RNA trans-splicing efficiency. Thereby, accurate trans-splicing between the RTM and the COL7A1-MG is represented by the restoration of full-length green fluorescent protein GFP on mRNA and protein level. This mechanism can be crucial for the improvement of an RTM-mediated correction, especially in cases where a high trans-splicing efficiency is required. 相似文献
15.
Nina Kubatova Dr. Hendrik R. A. Jonker Dr. Krishna Saxena Dr. Christian Richter Verena Vogel Sandra Schreiber Prof. Dr. Anita Marchfelder Prof. Dr. Harald Schwalbe 《Chembiochem : a European journal of chemical biology》2020,21(1-2):149-156
Past sequencing campaigns overlooked small proteins as they seemed to be irrelevant due to their small size. However, their occurrence is widespread, and there is growing evidence that these small proteins are in fact functionally very important in organisms found in all kingdoms of life. Within a global proteome analysis for small proteins of the archaeal model organism Haloferax volcanii, the HVO_2922 protein has been identified. It is differentially expressed in response to changes in iron and salt concentrations, thus suggesting that its expression is stress-regulated. The protein is conserved among Haloarchaea and contains an uncharacterized domain of unknown function (DUF1508, UPF0339 family protein). We elucidated the NMR solution structure, which shows that the isolated protein forms a symmetrical dimer. The dimerization is found to be concentration-dependent and essential for protein stability and most likely for its functionality, as mutagenesis at the dimer interface leads to a decrease in stability and protein aggregation. 相似文献
16.
Anna M. Schoepf Dr. Stefan Salcher Verena Hohn Florina Veider Prof. Dr. Petra Obexer Prof. Dr. Ronald Gust 《ChemMedChem》2020,15(12):1067-1077
New strategies to eradicate cancer stem cells in chronic myeloid leukemia (CML) include a combination of imatinib with peroxisome proliferator-activated receptor gamma (PPARγ) ligands. Recently, we identified the partial PPARγ agonist telmisartan as effective sensitizer of resistant K562 CML cells to imatinib treatment. Here, the importance of the heterocyclic core on the cell death-modulating effects of the telmisartan-derived lead 4′-((2-propyl-1H-benzo[d]imidazol-1-yl)methyl)-[1,1′-biphenyl]-2-carboxylic acid ( 3 b ) was investigated. Inspired by the pharmacodynamics of HYL-6d and the selective PPARγ ligand VSP-51, the benzimidazole was replaced by a carbazole or an indole core. The results indicate no correlation between PPARγ activation and sensitization of resistant CML cells to imatinib. The 2-COOH derivatives of the carbazoles or indoles achieved low activity at PPARγ, while the benzimidazoles showed 60-100 % activation. Among the 2-CO2CH3 derivatives, only the ester of the lead ( 2 b ) slightly activated PPARγ. Sensitizing effects were further observed for this non-cytotoxic 2 b (80 % cell death), and to a lesser extent for the lead 3 b or the 5-Br-substituted ester of the benzimidazoles ( 5 b ). 相似文献
17.
Marie-Theres Hutchison Dr. Giovanni Bellomo Dr. Alexey Cherepanov Elke Stirnal Dr. Boris Fürtig Dr. Christian Richter Verena Linhard Elina Gurewitsch Prof. Dr. Moreno Lelli Prof. Dr. Nina Morgner Prof. Dr. Thomas Schrader Prof. Dr. Harald Schwalbe 《Chembiochem : a European journal of chemical biology》2023,24(7):e202200760
The aggregation of amyloid-β 42 (Aβ42) is directly related to the pathogenesis of Alzheimer's disease. Here, we have investigated the early stages of the aggregation process, during which most of the cytotoxic species are formed. Aβ42 aggregation kinetics, characterized by the quantification of Aβ42 monomer consumption, were tracked by real-time solution NMR spectroscopy (RT-NMR) allowing the impact that low-molecular-weight (LMW) inhibitors and modulators exert on the aggregation process to be analysed. Distinct differences in the Aβ42 kinetic profiles were apparent and were further investigated kinetically and structurally by using thioflavin T (ThT) and transmission electron microscopy (TEM), respectively. LMW inhibitors were shown to have a differential impact on early-state aggregation. Insight provided here could direct future therapeutic design based on kinetic profiling of the process of fibril formation. 相似文献
18.
The invasive green alga, Caulerpa taxifolia, that has spread rapidly after its introduction into the Mediterranean and the North American Pacific, reacts to wounding by transforming its major metabolite caulerpenyne (1). This wound-activated reaction involves the transformation of the bis-enol acetate moiety of 1, releasing reactive 1,4-dialdehydes. The ability to perform this transformation is found also in both the noninvasive Mediterranean C. prolifera and the invasive C. racemosa. Trapping experiments, as well as transformation of the model substrate geranyl acetate, suggest that all three investigated Caulerpa spp. rely on esterases that act upon wounding of the algae by subsequently removing the three acetate residues of caulerpenyne. The resulting reactive 1,4-dialdehyde oxytoxin 2 (9) can be identified by liquid chromatography–mass spectrometry and is unstable in the wounded tissue. Caulerpenyne transformation occurs rapidly, and severe tissue damage caused degradation of more than 50% of the stored caulerpenyne within 1 min in all three algae. Prevention of the enzymatic reaction before extraction, by shock freezing the tissue with liquid nitrogen, was used for the determination of the caulerpenyne content in intact algae. It gives about twofold higher values compared to an established methanol extraction protocol. The speed and mechanism of the wound-activated transformation, as well as the caulerpenyne content in intact tissue of invasive and noninvasive Caulerpa spp., are comparable. Thus, this enzymatic , transformation, despite being fast and efficient, is likely not the key for the success of the investigated invasive species. 相似文献
19.
Effect of different biopolymers and polymers on the mechanical and permeation properties of extruded PHBV cast films 下载免费PDF全文
The biopolymer poly‐3‐hydroxybutyrate‐co‐3‐hydroxyvalerate (PHBV) is a promising material for packaging applications but its high brittleness is challenging. To address this issue, PHBV was blended with nine different biopolymers and polymers in order to improve the processing and mechanical properties of the films. Those biopolymers were TPS, PBAT, a blend of PBAT + PLA, a blend of PBAT + PLA + filler, PCL and PBS, and the polymers TPU, PVAc, and EVA. The extruded cast films were analyzed in detail (melting temperature, crystallinity, mechanical properties, permeation properties, and surface topography). A decrease in crystallinity and Young's modulus and an increase in elongation at break and permeability were observed with increasing biopolymer/polymer concentration. In PHBV‐rich blends (≥70 wt % PHBV), the biopolymers/polymers PCL, PBAT, and TPU increased the elongation at break while only slightly increasing the permeability. Larger increases in the permeability were found for the films with PBS, PVAc, and EVA. The films of biopolymer/polymer‐rich blends (with PBAT, TPU, and EVA) had significantly different properties than pure PHBV. A strong effect on the properties was measured assuming that at certain biopolymer/polymer concentrations the coherent PHBV network is disrupted. The interpretation of the permeation values by the Maxwell–Garnett theory confirms the assumption of a phase separation. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46153. 相似文献
20.
Production,nutrient cycling and soil compaction to grazing of grass companion cropping with corn and soybean 总被引:1,自引:0,他引:1
Cristiano M. Pariz Ciniro Costa Carlos A. C. Crusciol Paulo R. L. Meirelles André M. Castilhos Marcelo Andreotti Nídia R. Costa Jorge M. Martello Daniel M. Souza Verena M. Protes Vanessa Z. Longhini Alan J. Franzluebbers 《Nutrient Cycling in Agroecosystems》2017,108(1):35-54
Agricultural management systems are needed to simultaneously enhance production, promote plant diversity, improve nutrient cycling and reduce soil compaction. We investigated the effects of intercropped forage grass on production of corn (Zea mays L.) harvested for silage at 0.20 and 0.45 m height in the summer, as well as on production of subsequent forage, soybean [Glycine max (L.) Merr.] harvested for silage, nutrient cycling and soil responses on a Typic Haplorthox in Botucatu, São Paulo State, Brazil. Palisade grass cv. BRS Piatã [Urochloa brizantha cv. BRS Piatã] was the introduced companion crop with corn (Years 1 and 2), while signal grass [Urochloa decumbens cv. Basilisk] was the residual weedy species in comparison. Guineagrass cv. Aruãna [Megathyrsus maximus cv. Aruãna] was the introduced companion crop with soybean (Year 3), with only a residual effect of crop systems from the previous two years. After the corn silage harvest, pasture was grazed by lambs in winter/spring using a semi-feedlot system. When cut at 0.45 m compared with 0.20 m height, corn intercropped with palisade grass had greater leaf nutrient concentration, improved agronomic characteristics, forage mass of pasture for grazing by lambs, greater surface mulch produced, and greater quantity of N, P and K returned to soil. Greater soil organic matter, P, K and Mg concentration, and base saturation in the surface soil depth and lower soil penetration resistance at all depths occurred at 0.45 m than at 0.20 m corn silage cutting height intercropped with palisade grass. Analyzing the system as a whole, harvesting corn silage crop with palisade grass intercrop at 0.45 m height was the most viable option in this integrated crop-livestock system. 相似文献