首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
化学工业   7篇
机械仪表   2篇
建筑科学   6篇
能源动力   1篇
轻工业   1篇
一般工业技术   1篇
冶金工业   3篇
自动化技术   1篇
  2021年   2篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2010年   2篇
  2008年   4篇
  2007年   3篇
  2003年   1篇
  2000年   1篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1989年   1篇
  1968年   1篇
排序方式: 共有22条查询结果,搜索用时 0 毫秒
21.
Fumonisin B1 (FB1) is the predominant member of a family of mycotoxins produced by Fusarium moniliforme (Sheldon) and related fungi. Certain foods also contain the aminopentol backbone (AP1) that is formed upon base hydrolysis of the ester-linked tricarballylic acids of FB1. Both FB1 and, to a lesser extent, AP1 inhibit ceramide synthase due to structural similarities between fumonisins (as 1-deoxy-analogs of sphinganine) and sphingoid bases. To explore these structure-function relationships further, erythro- and threo-2-amino, 3-hydroxy- (and 3, 5-dihydroxy-) octadecanes were prepared by highly stereoselective syntheses. All of these analogs inhibit the acylation of sphingoid bases by ceramide synthase, and are themselves acylated with Vmax/Km of 40-125 for the erythro-isomers (compared with approximately 250 for D-erythro-sphinganine) and 4-6 for the threo-isomers. Ceramide synthase also acylates AP1 (but not FB1, under the conditions tested) to N-palmitoyl-AP1 (PAP1) with a Vmax/Km of approximately 1. The toxicity of PAP1 was evaluated using HT29 cells, a human colonic cell line. PAP1 was at least 10 times more toxic than FB1 or AP1 and caused sphinganine accumulation as an inhibitor of ceramide synthase. These studies demonstrate that: the 1-hydroxyl group is not required for sphingoid bases to be acylated; both erythro- and threo-isomers are acylated with the highest apparent Vmax/Km for the erythro-analogs; and AP1 is acylated to PAP1, a new category of ceramide synthase inhibitor as well as a toxic metabolite that may play a role in the diseases caused by fumonisins.  相似文献   
22.
Indoor exposure to fungi has been associated with respiratory symptoms,often attributed to their cell wall component, (1-3)-beta-D-glucan. Performing(1-3)-beta-D-glucan analysis is less time consuming and labor intensive than cultivation or microscopic counting of fungal spores. This has prompted many to use(1-3)-beta-D-glucan as a surrogate for fungal exposure. The aim of this study was to examine which indoor fungal species are major contributors to the (1-3)-beta-D-glucan concentration in field dust samples. We used the quantitative polymerase chain reaction (QPCR) method to analyze 36 indoor fungal species in 297 indoor dust samples. These samples were also simultaneously analyzed for (1-3)-beta-D-glucan concentration using the endpoint chromogenic Limulus Amebocyte lysate assay. Linear regression analysis, followed by factor analysis and structural equation modeling, were utilized in order to identify fungal species that mostly contribute to the (1-3)-beta-D-glucan concentration in field dust samples. The study revealed that Cladosporium and Aspergillus genera, as well as Epicoccum nigrum, Penicillium brevicompactum and Wallemia sebi were the most important contributors to the (1-3)-beta-D-glucan content of these home dust samples. The species that contributed most to the (1-3)-beta-D-glucan concentration were also the most prevalent in indoor environments. However, Alternaria alternata, a common fungal species in indoor dust, did not seem to be a significant source of (1-3)-beta-D-glucan. PRACTICAL IMPLICATIONS: This study revealed that the (1-3)-beta-D-glucan content of different fungal species varies widely. (1-3)-beta-D-glucan inhouse dust from the Greater Cincinnati area may be a good marker for some fungal species of the Cladosporium and Aspergillus genera. In contrast, Alternaria alternata did not contribute much to the (1-3)-beta-D-glucan load. Therefore, (1-3)-beta-D-glucan concentration in field samples as a surrogate for total fungal exposure should be used with caution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号