首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2048篇
  免费   69篇
  国内免费   8篇
电工技术   26篇
化学工业   421篇
金属工艺   37篇
机械仪表   57篇
建筑科学   21篇
矿业工程   5篇
能源动力   127篇
轻工业   167篇
水利工程   46篇
石油天然气   4篇
无线电   229篇
一般工业技术   356篇
冶金工业   154篇
原子能技术   18篇
自动化技术   457篇
  2024年   5篇
  2023年   38篇
  2022年   66篇
  2021年   67篇
  2020年   47篇
  2019年   71篇
  2018年   86篇
  2017年   71篇
  2016年   75篇
  2015年   52篇
  2014年   80篇
  2013年   161篇
  2012年   76篇
  2011年   124篇
  2010年   84篇
  2009年   105篇
  2008年   74篇
  2007年   92篇
  2006年   58篇
  2005年   56篇
  2004年   41篇
  2003年   49篇
  2002年   44篇
  2001年   25篇
  2000年   36篇
  1999年   30篇
  1998年   49篇
  1997年   47篇
  1996年   33篇
  1995年   38篇
  1994年   23篇
  1993年   16篇
  1992年   22篇
  1991年   18篇
  1990年   19篇
  1989年   15篇
  1988年   19篇
  1987年   9篇
  1986年   9篇
  1985年   11篇
  1984年   9篇
  1983年   14篇
  1982年   10篇
  1981年   4篇
  1980年   7篇
  1979年   10篇
  1978年   5篇
  1977年   4篇
  1976年   5篇
  1972年   5篇
排序方式: 共有2125条查询结果,搜索用时 15 毫秒
81.
This work deals with the study of hydrothermally synthesized zinc oxide (ZnO) loaded mesoporous SBA‐15 hybrid nanocomposite for relative humidity sensing (RH) at room temperature. The sensor exhibits an excellent ~5 orders impedance change along with excellent linearity, quick response time (17 s), rapid recovery time (18 s), negligible hysteresis (1.2%), good repeatability, and stability (1.8%) in 11%–98% RH range. In addition, complex impedance spectra of the sensor at different RHs were analyzed to understand the humidity sensing mechanism. Our study can open a new way for realizing ZnO/SBA‐15 hybrid nanocomposite for fabrication of high‐performance RH sensors.  相似文献   
82.
In vibration welding of thermoplastics, frictional heat generated by vibrating two parts under pressure, along their common interface, is used to effect welds. In the normal, well-understood mode, the vibratory motion is along the weld seam, which is at right angles to the thickness direction for straight boundaries. But in many applications, such as in the welding of closed seams of box-like parts, this vibratory motion occurs in the part-thickness direction, so that a portion of the molten layer along the seam is exposed to the ambient air during each vibratory cycle. The resulting reduction in temperature can affect weld quality. The process phenomenology and the weld strengths of such cross-thickness vibration-welded butt joints are investigated for four neat resins. Weld amplitudes and weld pressures are shown to affect the strengths of 120-Hz welds differently. It is shown that strengths on the order of the strengths of the neat resins can be achieved in 250-Hz butt welds.  相似文献   
83.
In this study, we demonstrated a novel three‐dimensional network of thermally stable fumed silica (FS)–resorcinol formaldehyde (RF) nanocomposites via an ionic‐liquid (IL)‐assisted in situ polycondensation process. The study involved subjecting the tailored nanocomposites to thermogravimetric analysis and oxyacetylene flame environment as per ASTM test standards for thermal ablative performance. X‐ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, high‐resolution transmission electron microscopy, Raman spectroscopy, and wettability studies were undertaken to underline the improvement correlation in the microstructure and material properties. Significant reductions in the linear ablation rate (66%) and mass ablation rate (26.6%), along with lower back‐face temperature profiles, marked enhanced ablative properties. The increased char yield (33.3%) and higher temperatures for weight losses evinced the improved thermal stability of the modified RF resin. The uniformly dispersed fused nanosilica with a glassy coating morphology on the ablative surface acted as barrier to oxidation. The results signify that the IL‐assisted modification of the RF resin with FS significantly enhanced ablative performance. A viable replacement to the conventional phenolic nanocomposites for thermal ablative applications to buy critical time for the containment and suppression of thermal‐heat‐flux threats is of paramount importance. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45328.  相似文献   
84.
Electron beam (EB)-irradiation is increasingly being preferred to radioactive-based gamma irradiation in overcoming the constraints that affect the quality of food material. Soybean seeds of 3 soybean genotypes were exposed to 4 doses viz. 4.8, 9.2, 15.3 and 21.2 kGy of EB-irradiation and assessed for the changes in the contents of lipoxygenase isozymes and tocopherol isomers. Densitometry of protein profile revealed decreasing intensity of lipoxygenase with increasing EB dose. All the 3 lipoxygenase isozymes viz. lipoxygenase-1, -2 and -3 registered significant (P < 0.05) increasing reduction with increasing dose; though genotypic variation was noted for the magnitude of reduction at the same dose. Concomitantly, all the 3 genotypes exhibited significant (P < 0.05) decline in α-, γ- and δ-isomers of tocopherol. δ-Tocopherol was the most sensitive to EB-irradiation. EB dose, which caused minimum and maximum decline in total tocopherol content, was genotype-dependent. Decline in vitamin E activity corresponding to the dose, which induced maximum reduction for total lipoxygenase also varied in 3 genotypes. The study showed the usefulness of EB for significant inactivation of off-flavor generating lipoxygenases in soybean, with a non-significant effect on oil content and varied retention of tocopherol isomers and vitamin E activity depending upon genotype.  相似文献   
85.
Ultrasonic irradiation of molten gallium in organic liquids (decane, dodecane, etc.) results in dispersion of the gallium into nanometric spheres. These were examined by several analytical methods XRD, DSC, Raman and IR spectroscopy) as well as electron microscopy (SEM, TEM) and found to be composed of Ga and C. The DSC analysis indicates that the Ga has possibly reacted with carbon, while the Raman spectrum of the product demonstrates a strong additional peak that could not be identified. This work explores the possibility that the product is gallium carbide or another gallium‐carbon complex. To investigate the nature of the product, we performed detailed extended X‐ray absorption fine structure (EXAFS) and X‐ray absorption near‐edge structure (XANES) analyses. On the basis of DSC, IR, and Raman it appear to be formation of GaC, whereas the analysis by EXAFS and XANES demonstrated that the gallium is found to be in a higher reduced state (almost metallic), supported by carbon. The question that remains open in addition to the one related to the formation of galium carbide is whether a complex structure, including oxygen contamination is involved in the layers surrounding the Ga as indicated by the EXAFS results.  相似文献   
86.
The biosorption of cyanide ions from aqueous solution by bagasse was studied in a batch adsorption system with pH, contact time, cyanide ion concentration, metal ion concentration, and adsorbent dosage as variables. XRD, FT-IR spectroscopy, CHN, proximate, ultimate, and TG/DTG thermal analyses were used for the characterization of bagasse. The biosorption capacities and rates of biosorption of cyanide ions onto bagasse were evaluated. The Langmuir and Freundlich adsorption models were applied to describe the isotherms and isotherm constants. Biosorption isothermal data were interpreted by the Langmuir model followed by the Freundlich model with maximum adsorption capacity of 98% of cyanide ion on bagasse. The kinetic experimental data were properly correlated with the first- and second-order kinetic model.  相似文献   
87.
This work presents experimental, modeling and simulation studies for Co2+ ion extraction using hollow fiber supported liquid membrane (HFSLM) operated in a recycling mode. Extractant di-(2-ethylhexyl) phosphoric acid (D2EHPA) diluted with kerosene has been used as the membrane phase. The Co2+ ion concentration in the aqueous feed phase was varied in the range of 1–3 mM. Also, D2EHPA concentration was varied in the range of 10–30% (v/v). A mass transfer model has been developed considering the complexation and de-complexation reactions to be fast and at equilibrium. Equations for extractant mass balance and counter-ion (H+) transport have also been incorporated in the model. Extraction equilibrium constant (Kex) for cobalt–D2EHPA system has been estimated from equilibration experiments and found to be 3.48 × 10−6. It was observed that the model results are in good agreement with the experimental data when diffusivity of metal-complex (Dm) through the membrane phase is 1.5 × 10−10 m2/s. Feed phase pH and strip phase acidity had negligible effect on the extraction profiles of Co2+ ions. An increase in D2EHPA concentration increased extraction rates of Co2+ ions. The membrane phase diffusion step was found to be the controlling resistance to mass transfer.  相似文献   
88.
A new design for the solid oxide fuel cell (SOFC) planar stack is proposed to minimise the thermal gradients in the cell. This design involves including a secondary air channel with flow in the counter direction to the cathodic air channel. The effectiveness of the new design is tested by means of a tank in series reactor (TSR) model of the SOFC. It is found that the new design is capable of reducing the steady state temperature difference across the cell to less than 2 K over a range of voltages, while satisfying the requirements on fuel utilisation (FU) and cell average temperature. This is achieved by manipulating the primary air channel inlet flow rate and the secondary air channel inlet temperature. More modelling and experimental studies are required to further investigate the proposed design.  相似文献   
89.
Two new alkyne‐terminated xanthate reversible addition‐fragmentation chain‐transfer (RAFT) agents: (S)‐2‐(Propynyl propionate)‐(O‐ethyl xanthate) (X3) and (S)‐2‐(Propynyl isobutyrate)‐(O‐ethyl xanthate) (X4) were synthesized and characterized and used for the controlled radical polymerization of N‐vinylpyrrolidone (NVP). X3 showed better chain transfer ability in the polymerization at 60°C. Molecular weight of the resulted polymer increased linearly with the increase in monomer loading. Kinetics study with X3 showed the pseudo‐first order kinetics up to 67% monomer conversion. Molecular weight (Mn) of the resulting polymer increased linearly with the increase in the monomer conversion up to around 67%. With the increase in the monomer conversion, polydispersity of the corresponding poly(NVP)s initially decreased from 1.34 to 1.32 and then increased gradually to 1.58. Chain‐end analysis of the resulting polymer by 1H‐NMR and FTIR showed clearly that polymerization started with radical forming out of xanthate RAFT agent. Living nature of the polymerization was also confirmed from the successful homo‐chain extension experiment and the hetero‐chain extension experiment involving synthesis of poly(NVP)‐b‐polystyrene amphiphilic diblock copolymer. Formed alkyne‐terminated poly(NVP) also allowed easy conjugation to azide‐terminated polystyrene by click chemistry to prepare well‐defined poly(NVP)‐b‐polystyrene block copolymers. Resulting polymers were characterized by GPC, 1H‐NMR, FTIR, and thermal study. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   
90.
In induction welding of thermoplastics, induction heating of a gasket, made of a ferromagnetic‐powder‐filled bonding material and placed at the interface of thermoplastic parts to be joined, is used to melt the interface; subsequent solidification of the melt results in a weld. Tensile tests on induction butt‐welds of polycarbonate (PC), poly(butylene terephthalate) (PBT), and polypropylene (PP) are used to characterize achievable weld strengths, and microscopy is used to correlate weld strength with the morphology of failure surfaces. In PC, PBT, and PP relative weld strengths as high as 48%, 43%, and 55% of the respective strengths of PC, PBT, and PP have been demonstrated. Relative weld strengths on the order of 20% have been demonstrated in PC‐to‐PBT welds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号