首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   242篇
  免费   11篇
  国内免费   6篇
电工技术   2篇
化学工业   57篇
金属工艺   7篇
机械仪表   1篇
建筑科学   10篇
能源动力   13篇
轻工业   31篇
水利工程   1篇
石油天然气   1篇
无线电   20篇
一般工业技术   32篇
冶金工业   24篇
自动化技术   60篇
  2024年   2篇
  2023年   4篇
  2022年   6篇
  2021年   21篇
  2020年   13篇
  2019年   14篇
  2018年   15篇
  2017年   9篇
  2016年   17篇
  2015年   2篇
  2014年   13篇
  2013年   32篇
  2012年   12篇
  2011年   13篇
  2010年   11篇
  2009年   15篇
  2008年   11篇
  2007年   9篇
  2006年   10篇
  2005年   8篇
  2004年   4篇
  2003年   3篇
  2002年   4篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1994年   2篇
  1991年   1篇
排序方式: 共有259条查询结果,搜索用时 15 毫秒
21.
Abstract:   Visualization of construction operations is an important technique to communicate the logic of simulation models in detail. Early efforts resulted in a scene graph and frame update algorithm that was capable of converting discrete information from simulation models into smooth and continuous 3D animations. That algorithm did not account for high speed or concurrent animation because the need to do so was not anticipated. Recent advances in computing power and an interest in using the technology for next generation applications now demand accurate high speed and concurrent animations. This article presents the design of the original algorithm at a previously undocumented level of detail and specificity, and that allows for the analysis of its shortcomings when used at high speeds or concurrently with simulation. Two subsequent but still inadequate designs of the algorithm are also presented and analyzed in detail so that they can serve as an illustration of the path toward the final design and place it in proper context. The article concludes with the final design and evaluation of the algorithm, which is accurate at very high animation speeds and supports concurrent animation of simulation models.  相似文献   
22.
Fiber reinforced polymer composites has been used in a variety of application because of their many advantages such as relatively low cost of production, easy to fabricate, and superior strength compare to neat polymer resins. Reinforcement in polymer is either synthetic or natural. Synthetic fiber such as glass, carbon, etc. has high specific strength but their fields of application are limited due to higher cost of production. Recently there is an increase interest in natural composites which are made by reinforcement of natural fiber. In this connection, an investigation has been carried out to make better utilization of coconut coir fiber for making value added products. The objective of the present research work is to study the physical, mechanical, and water absorption behavior of coir/glass fiber reinforced epoxy based hybrid composites. The effect of fiber loading and length on mechanical properties like tensile strength, flexural strength, and hardness of composites is studied. The experimental results reveal that the maximum strength properties is observed for the composite with 10 wt% fiber loading at 15 mm length. The maximum flexural strength of 63 MPa is observed for composites with 10 wt% fiber loading at 15 mm fiber length. Similarly, the maximum hardness value of 21.3 Hv is obtained for composites with 10 wt% fiber loading at 20 mm fiber length. Also, the surface morphology of fractured surfaces after tensile testing is examined using scanning electron microscope (SEM). POLYM. COMPOS., 35:925–930, 2014. © 2013 Society of Plastics Engineers  相似文献   
23.
An improved synthetic route to polypyrrole salt was accomplished using methanesulfonic acid as a novel dopant along with potassium persulfate as the oxidant employing inverted emulsion polymerization technique. Polypyrrole salt was obtained in high-weight percent yield (83.77%) with respect to the amount of monomer used and the reaction time was drastically reduced (1 h 10 min.) as compared to the previously reported synthesis methods. Characterization of the salt yielded satisfactory results. Inverted emulsion polymerization technique has several unique and distinct advantages over conventional techniques which facilitate the synthesis of fused five membered heterocyclic rings which are otherwise difficult to synthesize, and hence sparsely reported in the literature.  相似文献   
24.
BACKGROUND: Poly(1‐amino‐2‐naphthol‐4‐sulfonic acid) and its copolymers with aniline are a new class of conducting polymers which can acquire intrinsic protonic doping ability, leading to the formation of highly soluble self‐doped homopolymers and copolymers. Free ? OH and ? NH2 groups in the polymer chain can combine with other functional groups that could be present in protective paints which can thus be successfully used as antistatic materials. RESULTS: This paper reports the formation of nanotubes of polyaniline on carrying out oxidative polymerization of aniline in the presence of 1‐amino‐2‐naphthol‐4‐sulfonic acid (ANSA) in p‐toluenesulfonic acid (PTSA) as an external dopant. The presence of ? SO3H groups in the ANSA comonomer allows the copolymer to acquire intrinsic protonic doping ability. The polymerization mechanism was investigated by analysing the 1H NMR, 13C NMR, Fourier transform infrared and X‐ray photoelectron spectra of the copolymers and homopolymers, which revealed the involvement of ? OH/? NH2 in the reaction mechanism. Scanning and transmission electron microscopy showed how the reaction route and the presence of a dopant can affect the morphology and size of the polymers. Static decay time measurements were also carried out on conducting copolymer films prepared by blending of 1 wt% of copolymers of ANSA and aniline with low‐density polyethylene (LDPE) which showed a static decay time of 0.1 to 0.31 s on dissipating a charge from 5000 to 500 V. CONCLUSION: Copolymers of ANSA with aniline were synthesized in different reaction media, leading to the formation of nanotubes and nanoparticles of copolymer. Blends of 1 wt% of PTSA‐ and self‐doped copolymers of ANSA and aniline with LDPE can be formulated into films with effective antistatic properties. Copyright © 2009 Society of Chemical Industry  相似文献   
25.
We propose method for the local spectral analysis of images via the two-dimensional continuous wavelet transform with the Morlet wavelet based on its representation as a solution of the partial differential equation. It has been shown that a transformed function uniquely determines an initial value for the equation, i.e. a Cauchy problem is stated. Its solving implies that scale parameter a plays a role of “time variable” and two translation parameters b x , b y are spatial independent variables. Numerical examples are given to illustrate the efficiency of the proposed method.  相似文献   
26.
When the electromagnetic wave propagates through a slab superconducting material in microwave ranges,tunneling properties of the electromagnetic wave at critical temperature are investigated theoretically.The transmittance and the reflectance of the slab superconducting material vary with the thickness of material as well as the refractive index of substrates.The high transmittance is found for thin superconductor at low wavelength region.However,optical properties are strongly dependent upon temperature and incidence wavelength.The electromagnetic wave is totally transmitted without loss for incidence wavelength(l = 5000 nm) due to the zero refractive index and infinite penetration depth of the superconductor at the critical temperature.  相似文献   
27.
We present the first systematic study of cyanobiphenyls (CBs) and the phenylcyclohexanes in the range between 50 cm-1 (1.5 THz) and 500 cm-1 (15 THz). The impact of the alkyl chain length and of variations in the core structure on the spectrum is investigated using liquid crystals from the cyanobiphenyl and phenylcyclohexane families. Our measurements are supported by calculations based on density functional theory. This enables us to shine light on the vibrational dynamics of liquid crystal molecules in the terahertz frequency range.  相似文献   
28.
Increased interest in microwave puffing is due to its ability to obtain low-fat and ready-to-eat healthy products. Determination of optimal conditions for this complex process has been difficult and although several patents exist on the concept, we are yet to see any large scale commercial use. A fundamental physics based modeling approach integrated with relevant experimentation, developed in this work, is an ideal framework to understand and optimize microwave puffing. The results showed that puffing may not be successful unless carried out using an intensive heating source such as microwaves. Addition of infrared and hot air leads to better quality product whereas using forced air convection is not desirable. There is an optimum initial moisture content depending on the puffing conditions. The study provides critical guidelines to food product/process developers for successful development, control and automation of microwave puffing, thereby leading to value-added nutritious products.  相似文献   
29.
Each year, thousands of patients die from antimicrobial‐resistant bacterial infections that fail to respond to conventional antibiotic treatment. Antimicrobial polymers are a promising new method of combating antibiotic‐resistant bacterial infections. We have previously reported the synthesis of a series of narrow‐spectrum peptidomimetic antimicrobial polyurethanes that are effective against Gram‐negative bacteria, such as Escherichia coli; however, these polymers are not effective against Gram‐positive bacteria, such as Staphylococcus aureus. With the aim of understanding the correlation between chemical structure and antibacterial activity, we have subsequently developed three structural variants of these antimicrobial polyurethanes using post‐polymerization modification with decanoic acid and oleic acid. Our results show that such modifications converted the narrow‐spectrum antibacterial activity of these polymers into broad‐spectrum activity against Gram‐positive species such as S. aureus, however, also increasing their toxicity to mammalian cells. Mechanistic studies of bacterial membrane disruption illustrate the differences in antibacterial action between the various polymers. The results demonstrate the challenge of balancing antimicrobial activity and mammalian cell compatibility in the design of antimicrobial polymer compositions. © 2019 Society of Chemical Industry  相似文献   
30.
In this work, polyethylene glycol (PEG) as a phase change material (PCM) was incorporated with palygorskite (Pal) clay to develop a novel form-stable composite PCM (F-SCPCM). The Pal/PEG(40 wt%) composite was defined as F-SCPCM and characterized using SEM/EDS, FT-IR, XRD, DSC, and TGA techniques. The DSC results revealed that the F-SCPCM has a melting temperature of 32.5°C and latent heat capacity of 64.3 J/g for thermal energy storage (TES) applications. Thermal cycling test showed that the F-SCPCM had good cycling thermal/chemical stability after 500 cycles. The TGA data proved that that both cycled and non-cycled F-SCPCMs had considerable high thermal durability. Consequently, the created F-SCPCM could be considered as an additive material for production of green construction components with TES capability. POLYM. ENG. SCI., 60:909–916, 2020. © 2020 Society of Plastics Engineers  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号