首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   4篇
化学工业   34篇
机械仪表   6篇
矿业工程   1篇
轻工业   2篇
无线电   4篇
一般工业技术   12篇
冶金工业   2篇
自动化技术   9篇
  2022年   3篇
  2021年   3篇
  2020年   4篇
  2018年   1篇
  2017年   3篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   8篇
  2012年   5篇
  2011年   3篇
  2010年   4篇
  2009年   7篇
  2008年   3篇
  2007年   5篇
  2006年   1篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1996年   1篇
  1993年   1篇
  1989年   1篇
  1987年   1篇
  1985年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有70条查询结果,搜索用时 15 毫秒
41.
This article presents the atypical formations in the structure of the corrosion crust and in the partially mineralized metallic core, which resulted during the underground stay of a bronze shield, dated between the 1st century B.C. and the 1st century A.D. For our study, we choose a representative fragment from the rim of the shield, which was analyzed by optical microscopy and by electron microscopy coupled with energy‐dispersive X‐ray spectroscopy, to study its morphology, its composition, and the location of chemical compounds on the surface and inside the bulk formed during the underground stay, by processes of chemical and physical alteration, assisted by contamination with structural elements from the site. Those processes, by monolithization and mineralization formed a series of structures consisting of congruent elements and phases with a complex composition. Those formations, defined as surface effects generated by exogenous factors and endogenous factors inside the bulk, are frequently found in ancient bronze objects (such as the exterior flat mole formations and the Liesegang effect in the stratigraphic structure of the bulk). Some of those structures have atypical characteristics as regards their structure, composition, and formation mechanism, which may be used in archeometry. Moreover, that includes the object in the category of special cases, in terms of artifact evolution during underground stay and of the atypical formations resulted from the action of pedological and environmental factors. Microsc. Res. Tech. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   
42.
The most critical group of all includes multidrug resistant bacteria that pose a particular threat in hospitals, as they can cause severe and often deadly infections. Modern medicine still faces the difficult task of developing new agents for the effective control of bacterial-based diseases. The targeted administration of nanoparticles can enhance the efficiency of conventional pharmaceutical agents. However, the interpretation of interfaces’ interactions between nanoparticles and biological systems still remains a challenge for researchers. In fact, the current research presents a strategy for using ZnO NPs immobilization with ampicillin and tetracycline. Firstly, the study provides the mechanism of the ampicillin and tetracycline binding on the surface of ZnO NPs. Secondly, it examines the effect of non-immobilized ZnO NPs, immobilized with ampicillin (ZnONPs/AMP) and tetracycline (ZnONPs/TET), on the cells’ metabolism and morphology, based on the protein and lipid profiles. A sorption kinetics study showed that the antibiotics binding on the surface of ZnONPs depend on their structure. The efficiency of the process was definitely higher in the case of ampicillin. In addition, flow cytometry results showed that immobilized nanoparticles present a different mechanism of action. Moreover, according to the MALDI approach, the antibacterial activity mechanism of the investigated ZnO complexes is mainly based on the destruction of cell membrane integrity by lipids and proteins, which is necessary for proper cell function. Additionally, it was noticed that some of the identified changes indicate the activation of defense mechanisms by cells, leading to a decrease in the permeability of a cell’s external barriers or the synthesis of repair proteins.  相似文献   
43.
44.
Graft and crosslinked polydimethylsiloxane (PDMS)-chitosan copolymers were prepared through the reaction between mono and difunctional glycidoxypropyl-terminated PDMSs and chitosan. The transformation of amino groups of chitosan through the reaction with epoxy groups was confirmed by FT-IR and 13C cross-polarization (CP) magic-angle spinning (MAS)-NMR analysis. Chitosan-based materials modified with about 40% and 60% hydrophobic polydimethylsiloxane were obtained, respectively. As proved by wide angle X-ray analysis, the crystallinity of chitosan was strongly decreased through the incorporation of PDMS sequences. However, both graft and crosslinked copolymers still present a partial crystalline structure. Their X-ray patterns are not only different as compared to chitosan but also as compared to each other. For the graft copolymer, three diffraction peaks were observed at 2θ = 8.4°, 11.2° and 21.2°, indicating the formation of a new partially crystalline phase and the modification of the interplanar distances for the phases similar to chitosan. The crosslinked copolymer is even less crystalline, the peak around 2θ = 20° being strongly decreased. Different thermal behaviour of siloxane modified chitosan was registered for graft and crosslinked copolymers; the graft sample is less stable than chitosan, while the crosslinked copolymer showed an intermediate stability between chitosan and polydimethylsiloxane precursors.  相似文献   
45.
A remarkably high degree of plasticity in brittle epoxies during debonding failures is reported. The plasticity is exhibited by the presence of ridges on the debonded surfaces having a width and height above the general level of these surfaces of the order of 100 nm. The surfaces of the more rigid substrates from which the debonding has occurred, by contrast, are smooth after debonding. The ridges have been found in several forms: in more or less straight rows parallel to the debonding fracture direction; as irregularly-shapes rings or craters, probably formed from secondary crack growth; as paraboloids, which also seem to be related to secondary crack growth; and as serpentine rows more or less perpendicular to the debonding fracture direction. This behaviour has been exhibited by various epoxy formulations. The 100 nm widths and heights for the ridges suggest that during debonding, plastic deformation has occurred rather uniformly in the epoxy to a depth below the interface of this order. This behaviour is in contrast to the simple notion of brittle fracture, in which atoms or molecules separate across planes in an elastically strained body. It differs also from the bulk fracturing process with these resins, in which a smaller amplitude, more random ridge and groove texture, referred to as the basic longitudinal or fingering texture, is seen.  相似文献   
46.
Interpolation is an important component of recent methods for program verification. It provides a natural and effective means for computing the separation between the sets of ‘good’ and ‘bad’ states. The existing algorithms for interpolant generation are proof-based: They require explicit construction of proofs, from which interpolants can be computed. Construction of such proofs is a difficult task. We propose an algorithm for the generation of interpolants for the combined theory of linear arithmetic and uninterpreted function symbols that does not require a priori constructed proofs to derive interpolants. It uses a reduction of the problem to constraint solving in linear arithmetic, which allows application of existing highly optimized Linear Programming solvers in a black-box fashion. We provide experimental evidence of the practical applicability of our algorithm.  相似文献   
47.
A weak acid acrylic resin was used as an adsorbent for the investigation of Basic Blue 3 (BB3) adsorption kinetics, isotherms, and thermodynamic parameters. Batch adsorption studies were carried out to evaluate the effect of pH, contact time, initial concentration (28–100 mg/g), adsorbent dose (0.05–0.3 g), and temperature (290–323 K) on the removal of BB3. The adsorption equilibrium data were analyzed by the Langmuir, Temkin, and Freundlich isotherm models, with the best fitting being the first one. The adsorption capacity (Qo) increased with increasing initial dye concentration, adsorbent dose, and temperature; the highest maximum Qo (59.53 mg/g) was obtained at 323 K. Pseudo‐first‐order and pseudo‐second‐order kinetic models and intraparticle diffusion models were used to analyze the kinetic data; good agreement between the experimental and calculated amounts of dye adsorbed at equilibrium were obtained for the pseudo‐second‐order kinetic models for the entire investigated concentrations domain. Various thermodynamic parameters, such as standard enthalpy of adsorption (ΔHo = 88.817 kJ/mol), standard entropy of adsorption (ΔSo = 0.307 kJ mol?1 K?1), and Gibbs free energy (ΔGo < 0, for all temperatures investigated), were evaluated and revealed that the adsorption process was endothermic and favorable. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   
48.
Cellulose acetate was reacted with different amounts of 1,1,3,3-tetramethyldisiloxane in presence of Karstedt’s catalyst, in solution, by using dry acetone as a solvent. A dehydrocoupling reaction between Si-H and C-OH groups with H2 evolving and the formation of Si-O-C bond occured, as proved by FTIR and NMR spectra, having as a result the crosslinking of cellulose derivative. A model reaction was followed online by 1H NMR spectroscopy. Morphological changes as a result of the siloxane coupling to the cellulose derivative were emphasized by Environmental Scanning Electron Microscopy (ESEM). The surface (water contact angle and water vapor sorption capacities) and mechanical properties (breaking strength, breaking strain and Young modulus) of the networks processed as films were investigated and the results were correlated with the reactants ratios.  相似文献   
49.
Graphene liquid cells (GLCs) for transmission electron microscopy (TEM) enable high‐resolution, real‐time imaging of dynamic processes in water. Large‐scale implementation, however, is prevented by major difficulties in reproducing GLC fabrication. Here, a high‐yield method is presented to fabricate GLCs under millimeter areas of continuous graphene, facilitating efficient GLC formation on a TEM grid. Additionally, GLCs are located on the grid using correlated light‐electron microscopy (CLEM), which reduces beam damage by limiting electron exposure time. CLEM allows the acquisition of reliable statistics and the investigation of the most common shapes of GLCs. In particular, a novel type of liquid cell is found, formed from only a single graphene sheet, greatly simplifying the fabrication process. The methods presented in this work—particularly the reproducibility and simplicity of fabrication—will enable future application of GLCs for high‐resolution dynamic imaging of biomolecular systems.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号