首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3120篇
  免费   198篇
  国内免费   12篇
电工技术   32篇
综合类   10篇
化学工业   983篇
金属工艺   56篇
机械仪表   60篇
建筑科学   57篇
矿业工程   11篇
能源动力   148篇
轻工业   161篇
水利工程   16篇
石油天然气   16篇
武器工业   1篇
无线电   296篇
一般工业技术   819篇
冶金工业   139篇
原子能技术   51篇
自动化技术   474篇
  2023年   32篇
  2022年   85篇
  2021年   172篇
  2020年   67篇
  2019年   79篇
  2018年   100篇
  2017年   103篇
  2016年   120篇
  2015年   98篇
  2014年   169篇
  2013年   252篇
  2012年   192篇
  2011年   235篇
  2010年   169篇
  2009年   164篇
  2008年   176篇
  2007年   137篇
  2006年   103篇
  2005年   100篇
  2004年   87篇
  2003年   89篇
  2002年   98篇
  2001年   62篇
  2000年   49篇
  1999年   44篇
  1998年   27篇
  1997年   33篇
  1996年   32篇
  1995年   24篇
  1994年   27篇
  1993年   18篇
  1992年   23篇
  1991年   9篇
  1990年   21篇
  1989年   10篇
  1988年   5篇
  1987年   9篇
  1986年   5篇
  1985年   7篇
  1984年   15篇
  1983年   8篇
  1982年   7篇
  1981年   8篇
  1980年   5篇
  1979年   5篇
  1978年   4篇
  1976年   5篇
  1972年   5篇
  1971年   4篇
  1965年   4篇
排序方式: 共有3330条查询结果,搜索用时 15 毫秒
991.
The frontal polymerization of a monomer exposed continuously to UV radiation in the presence of a photobleachable initiator has been studied on the basis of the rate equations. The time dependence of photoinitiator concentration profile and that of monomer conversion within the irradiated sample have been calculated, assuming steady‐state conditions. It is thus possible to visualize how fast the polymerization profile is moving within the sample and how effectively the polymerization of a monomer layer located at a given distance from the surface proceeds upon exposure to UV radiation. © 2001 Society of Chemical Industry  相似文献   
992.
Starches isolated at different stages of maturation (milky, waxy, complete maturation) of wrinkled peas were investigated by differential scanning calorimetry (DSC) and X‐ray diffraction (XRD). It was shown that the maturation of wrinkled peas is accompanied by changes in the structural and thermodynamic properties of starches. The melting process of milky starches could be approximated by means of a “two‐state” model. The melting process of the waxy and completely maturated starches was described as the melting of a mixture of low and high temperature populations of double‐helical type crystallites, denoted as B‐ and B*‐types, as well as the melting of Vh ‐type crystallites. The relative amounts of the three structures were determined by deconvolution of the calorimetric peaks. The values of the melting cooperative units ( ϑ ) and the thickness of the crystalline lamellae (pitch heights) for starches were determined using mathematical models describing the melting processes. The values of the ϑ for milky, waxy, and completely maturated starches were calculated as 18 and 29 anhydroglucose residues, respectively. The thickness of the crystalline lamellae of B‐type crystals in the milky, waxy, and completely maturated starches were calculated. Structural changes in starch granules during maturation of wrinkled pea are discussed.  相似文献   
993.
In this study, we analyze the properties of boron isotope (11B)-rich powders from three different sources, that is, American, Cambridge, and Pavezyum, to fabricate the bulk Mg11B2 superconductors and evaluate their superconducting properties. While 11B-rich powder is an essential precursor to fabricate Mg11B2 superconductors for fusion magnet applications, the properties of the 11B powder turned out to be critical to determine the quality of the final superconducting product. Therefore, appropriate control of processing conditions is needed to comply with the requirements of the nuclear fusion application. Analysis of the B isotope ratio by accelerator mass spectroscopy and neutron transmission revealed that all three types of powder are enriched with 11B to better than 99 at % quality. In addition, Pavezyum's 11B shows the lowest crystallinity and smallest crystalline domain size as evidenced by the high-resolution X-ray diffractometer and scanning electron microscopy. The chemical states of the boron isotope investigated with near edge X-ray absorption fine structure spectroscopy and X-ray photoemission spectroscopy also reveals that Pavezyum boron has amorphous structure. Mg11B2 bulks and multi-filamentary (12-filament) wires have been manufactured, sintered at different temperatures and characterized via the transport critical current density. The wire with Pavezyum 11B shows three times higher current carrying capacity at a particular magnetic field compared to the wire using Cambridge 11B and hence, Pavezyum 11B boron has the potential for manufacturing fusion grade Mg11B2 based magnets. The results of this study demonstrated that Boron powders with higher purity, smaller grain size and lower crystallinity are critical for improving the superconducting and electronic properties of Mg11B2 samples fabricated from the powder. Thus, the low-neutron-activation Mg11B2 is possibly an affordable and technically viable candidate to replace NbTi superconductors in the low field poloidal field and correction coils for the next-generation fusion reactors.  相似文献   
994.
Three-dimensional (3D) printing is an attractive approach to fabricate highly porous extremely lightweight structures for architecture antivibrational packaging. We report 3D printing processing of model packaging structures using biodegradable poly(lactic acid) (PLA) as a source material, with acrylonitrile butadiene styrene (ABS) utilized as a common 3D printing source material as a traditional benchmarked material. The effects of printing temperature, speed, and layer morphology on the layer-by-layer 3D-printed structures and their mechanical properties were considered. Three different characteristic morphologies were identified based on printing temperature; the microscopic surface roughness was dependent on the printing speed and layer height. We demonstrate that the mechanical performances and surface properties of 3D-printed PLA structures could be improved by optimization of printing conditions. Specifically, we evaluate that these PLA-based 3D structures printed exhibited better surface qualities and enhanced mechanical performance than traditional ABS-based structures. Results showed that the PLA-based 3D structures possessed the favorable mechanical performance with 34% higher Young's modulus and 23% higher tensile strength in comparison to the ABS-based 3D structures. This study provides guidelines for achieving high-quality 3D-printed lightweight structures, including smooth surfaces and durable mechanical properties, and serves as a framework to create biodegradable 3D-printed parts for human use.  相似文献   
995.
Nitric oxide (NO) is a powerful vasodilator in different vascular beds and NO-donors are widely used in clinical practice. Early data suggested that NO and NO-donors activate vascular smooth muscle high-conductance, calcium-activated potassium channels (BK channels). There exist two hypotheses explaining the effect of NO and NO-donors on BK channels—one stating that protein kinase G (PKG) mediates the effect of NO, and the other one stating that NO acts directly on the channel. Thus, the degree of contribution of PKG to the NO-induced activation of the BK channel is still not completely clear. This study tested the hypothesis that the sodium nitroprusside (SNP)-induced activation of vascular smooth muscle BK channels is fully mediated by PKG. This hypothesis was investigated using the patch-clamp technique and freshly isolated smooth muscle cells from rat tail artery. In whole-cell experiments, SNP considerably increased the outward current compared with the addition of the bath solution. SNP did not alter the current in the presence of iberiotoxin, the specific blocker of BK channels, during co-application with hydroxocobalamin, an NO-scavenger, and in the presence of Rp-8-Br-PET-cGMPS, the specific PKG-inhibitor. In inside-out patches, the activity of BK channels was increased by SNP, SNAP, and DEA-NO. However, these effects did not differ from the effect of the application of drug-free bath solution. Furthermore, a similar increase in single BK channel activity was induced by Rp-8-Br-PET-cGMPS, Rp-8-Br-PET-cGMPS together with SNP, hydroxocobalamin, and hydroxocobalamin together with SNP or DEA-NO. Finally, the activity of excised BK channels did not change in the absence of any application but was considerably increased by PKG compared with the addition of drug-free bath solution. These results suggest that NO released from NO-donors stimulates the BK current only through activation of PKG.  相似文献   
996.
Silver nanoparticles were synthesized in a chitosan biopolymer by an in situ ‘green’ chemical procedure, using d-glucose as the reducing agent. The reaction intermediates (silver–chitosan complexes) as well as the obtained nanocomposites were investigated using transmission electron microscopy, UV–vis, FTIR and photoluminescence spectroscopy. The theoretical analysis of the UV–vis absorption of the Ag–chitosan complexes suggested that the significant contribution to the complex spectrum arises from clusters of silver containing 4–9 atoms. The absorption spectrum of the nanocomposite exhibited a strong surface plasmon resonance band at 406 nm. The photoluminescence behavior of the pure chitosan, the silver–chitosan complexes and the nanocomposites were discussed in terms of morphology and silver weight content.  相似文献   
997.
This paper presents an analysis of some measures leading to intensification of the combustion process in a biomass-fuelled fluidized-bed combustor with a cone-shape bed (or ‘conical FBC’). Two combustors firing rice husks with elevated fuel-ash content were the focus of this study. Compared to the pilot 350-kWth conical FBC exhibiting combustion efficiency of up to 96%, the newly constructed 400-kWth combustor included geometrical and design modifications aimed at improving the combustion efficiency and emission performance of the reactor. Differences between the air distributors and Δpu diagrams (accounting for the total pressure drop across the air distributor and gas–solid fluidized bed) for the two reactors are discussed. Axial temperature and gas concentration (O2, CO and NOx) profiles in the combustors were compared for similar operating conditions (excess air and heat release rate per unit cross-sectional area). At excess air of 40–60%, the bed temperature in the advanced conical FBC was substantially, by about 180 °C, higher than that in the pilot combustor, mainly, due to better fuel–air mixing and higher residence time of reactants. The formation and decomposition of CO and NO in the bed region as well as in the freeboard of these two combustors showed quite different trends under similar operating conditions. At excess air of 40–60%, the CO emission from the advanced conical FBC was found to be much (7–8 times) lower than that from the pilot combustor, while the NOx emissions were represented by almost the same values. High (over 99%) combustion efficiency was achieved when firing rice husk in the advanced 400 kWth conical FBC for the range of excess air.  相似文献   
998.
Highly uniform NiO nano-particles with a crystallite size of about 3 nm were obtained by room-temperature ball-milling of the parent Ni(OH)2, which was derived using a sol-gel method. The obtained nano-structured NiO precursor was then utilized for the fabrication of NiO-sensing electrodes (SEs), which were further examined in the mixed-potential-type YSZ-based planar NO2 sensor. The obtained results revealed the attractive advantages for the application of mechanochemical approach in regard to achieve high NO2 sensitivity, NO2 selectivity and reproducibility. All of the evaluated sensors attached with the nano-structured NiO-SEs, regardless of its sintering temperature, were found to exhibit high NO2 sensitivity at 800 °C under the wet condition (5 vol.% water vapor). In addition to high NO2 sensitivity, the sensor attached with 1100 °C-sintered NiO-SE showed highly selective properties towards NO2. The observed improvement in NO2-sensing characteristics as well as the attainment of highly reproducible behavior for different sensor devices is discussed based on morphological and electrochemical observations of the studied sensors.  相似文献   
999.
The ionic conductivity of the hafnia-scandia, hafnia-yttria, and hafnia-rare earth solid solutions with high dopant concentrations of 8, 10, and 14 mol% was measured in air at 600° to 1050°C. Impedance spectroscopy was used to obtain lattice conductivity. A majority of the investigated samples exhibited linear Arrhenius plots of the lattice conductivity as a function of temperature. For all investigated dopant concentrations the ionic conductivity was shown to decrease as the dopant radius increased. The activation enthalpy for conduction was found to increase with dopant ionic radius. The fact that the highest ionic conductivity among 14-mol%-doped systems was obtained with HfO2─Sc2O3 suggested that the radius ratio approach should be used to predict the electrical conductivity behavior of HfO2─R2O3 systems. A qualitative model based on the Kilner's lattice parameter map does not seem to apply to these systems. For the three systems HfO2─Yb2O3, HfO2─Y2O3, and Hf2O3─Sm2O3 a conductivity maximum was observed near the dopant concentration of 10 mol%. Deep vacancy trapping is responsible for the decrease in the ionic conductivity at high dopant concentrations. Formation of microdomains of an ordered compound cannot explain the obtained results. A comparison between the ionic conductivities of doped HfO2 and ZrO2 systems indicated that the ionic conductivities of HfO2 systems are 1.5 to 2.2 times lower than the ionic conductivities of ZrO2 systems.  相似文献   
1000.
Speciation of As, Cr, Se and Hg under coal fired power station conditions   总被引:3,自引:0,他引:3  
Coal combustion from power stations is an important anthropogenic contributor of toxic trace elements to the environment. Some trace elements may be emitted in range of valencies, often with varying toxicity and bioavailability. Hence, determination of trace element speciation in coals and their combustion products is important for conducting comprehensive risk assessments of the emissions from coal-fired power stations. This study focuses on speciation of selected trace elements, As, Cr, and Se, in coal combustion products and Hg in flue gas, which were sampled at one Australian power station. Different analytical methods such as secondary ion mass spectrometry (SIMS), ion chromatography-inductively coupled plasma mass spectrometry (IC-ICPMS) and X-ray absorption near edge structure spectrometry (XANES) were used to determine trace element speciation in coal and ash samples. Results showed that As, Cr and Se are all present in a range of valency states in coal. Concentrations of As and Se in the bottom ash as well as the more toxic hexavalent chromium were less than the detection limits. The more toxic As3+ form in fly ash was at 10% of the total arsenic, while selenium was mainly found in Se4+ form. Hexavalent chromium (Cr6+) in fly ash was 2.7% of the total fly ash chromium. Mercury speciation in flue gas was determined using the Ontario Hydro sampling train and analysis technique. Approximately 58% of the total mercury in flue gas was released in the elemental form (Hg0), which, among all mercury species, has the highest residence time in the environment due to lower solubility. This work summarises the performance of the selected analytical techniques for speciation of trace elements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号