全文获取类型
收费全文 | 3274篇 |
免费 | 191篇 |
国内免费 | 16篇 |
专业分类
电工技术 | 32篇 |
综合类 | 10篇 |
化学工业 | 1129篇 |
金属工艺 | 56篇 |
机械仪表 | 61篇 |
建筑科学 | 57篇 |
矿业工程 | 12篇 |
能源动力 | 146篇 |
轻工业 | 161篇 |
水利工程 | 16篇 |
石油天然气 | 12篇 |
武器工业 | 1篇 |
无线电 | 298篇 |
一般工业技术 | 816篇 |
冶金工业 | 143篇 |
原子能技术 | 51篇 |
自动化技术 | 480篇 |
出版年
2023年 | 51篇 |
2022年 | 172篇 |
2021年 | 174篇 |
2020年 | 67篇 |
2019年 | 79篇 |
2018年 | 100篇 |
2017年 | 103篇 |
2016年 | 122篇 |
2015年 | 99篇 |
2014年 | 169篇 |
2013年 | 253篇 |
2012年 | 192篇 |
2011年 | 235篇 |
2010年 | 171篇 |
2009年 | 164篇 |
2008年 | 176篇 |
2007年 | 137篇 |
2006年 | 103篇 |
2005年 | 101篇 |
2004年 | 87篇 |
2003年 | 89篇 |
2002年 | 97篇 |
2001年 | 62篇 |
2000年 | 52篇 |
1999年 | 47篇 |
1998年 | 28篇 |
1997年 | 35篇 |
1996年 | 32篇 |
1995年 | 24篇 |
1994年 | 27篇 |
1993年 | 19篇 |
1992年 | 22篇 |
1991年 | 12篇 |
1990年 | 22篇 |
1989年 | 13篇 |
1988年 | 6篇 |
1987年 | 13篇 |
1986年 | 8篇 |
1985年 | 10篇 |
1984年 | 16篇 |
1983年 | 11篇 |
1982年 | 12篇 |
1981年 | 11篇 |
1980年 | 4篇 |
1979年 | 5篇 |
1978年 | 4篇 |
1976年 | 5篇 |
1972年 | 4篇 |
1971年 | 4篇 |
1965年 | 3篇 |
排序方式: 共有3481条查询结果,搜索用时 15 毫秒
81.
Elena S. Bobkova Dmitriy S. Krasnov Alexandra V. Sungurova Vladimir V. Rybkin Ho-Suk Choi 《Korean Journal of Chemical Engineering》2016,33(5):1620-1628
We studied phenol decomposition in aqueous solution under the action of DC discharge at atmospheric pressure in air. The decomposition efficiency was 0.017 molecules per 100 eV. When the kinetics of forming destruction products was studied in detail, the peculiarities of air plasma action were revealed for the first time. Plasma action not only results in the formation of oxygen-containing products, which are usually formed under oxygen plasma action (hydroxyhenols, carboxylic acids, aldehydes), but also the formation of nitro phenols. The treatment is accompanied by hydrogen peroxide formation, a pH decrease, and nitric and nitrous acids formation. We also discussed the possible mechanism of the processes and the role of some active species in chemical transformations after determining some parameters of the discharge. 相似文献
82.
Melchior E. Evers Vladimir Titorenko Wim Harder Ida van der Klei Marten Veenhuis 《Yeast (Chichester, England)》1996,12(10):917-923
We have studied the role of flavin adenine dinucleotide (FAD) in the in vivo assembly of peroxisomal alcohol oxidase (AO) in the yeast Hansenula polymorpha. In previous studies, using a riboflavin (Rf) autotrophic mutant, an unequivocal judgement could not be made, since Rf-limitation led to a partial block of AO import in this mutant. This resulted in the accumulation of AO precursors in the cytosol where they remained separated from the putative peroxisomal AO assembly factors. In order to circumvent the peroxisomal membrane barrier, we have now studied AO assembly in a peroxisome-deficient/Rf-autotrophic double mutant (Δper1.rif1) of H. polymorpha. By sucrose density centrifugation and native gel electrophoresis, three conformations of AO were detected in crude extracts of Δper1.rif1 cells grown under Rf-limitation, namely active octameric AO and two inactive, monomeric forms. One of the latter forms lacked FAD; this form was barely detectable in extracts wild-type and Δper1 cells, but had accumulated in the cytosol of rif1 cells. The second form of monomeric AO contained FAD; this form was also present in Δper1 cells but absent/very low in wild-type and rif1 cells. In vivo only these FAD-containing monomers associate into the active, octameric protein. We conclude that in H. polymorpha FAD binding to the AO monomer is mediated by a yet unknown peroxisomal factor and represents the crucial and essential step to enable AO oligomerization; the actual octamerization and the eventual crystallization in peroxisomes most probably occurs spontaneously. 相似文献
83.
Victor V. Dyakin Nuka V. Dyakina-Fagnano Laura B. Mcintire Vladimir N. Uversky 《International journal of molecular sciences》2022,23(1)
In humans, age-associated degrading changes, widely observed in molecular and cellular processes underly the time-dependent decline in spatial navigation, time perception, cognitive and psychological abilities, and memory. Cross-talk of biological, cognitive, and psychological clocks provides an integrative contribution to healthy and advanced aging. At the molecular level, genome, proteome, and lipidome instability are widely recognized as the primary causal factors in aging. We narrow attention to the roles of protein aging linked to prevalent amino acids chirality, enzymatic and spontaneous (non-enzymatic) post-translational modifications (PTMs SP), and non-equilibrium phase transitions. The homochirality of protein synthesis, resulting in the steady-state non-equilibrium condition of protein structure, makes them prone to multiple types of enzymatic and spontaneous PTMs, including racemization and isomerization. Spontaneous racemization leads to the loss of the balanced prevalent chirality. Advanced biological aging related to irreversible PTMs SP has been associated with the nontrivial interplay between somatic (molecular aging) and mental (psychological aging) health conditions. Through stress response systems (SRS), the environmental and psychological stressors contribute to the age-associated “collapse” of protein homochirality. The role of prevalent protein chirality and entropy of protein folding in biological aging is mainly overlooked. In a more generalized context, the time-dependent shift from enzymatic to the non-enzymatic transformation of biochirality might represent an important and yet underappreciated hallmark of aging. We provide the experimental arguments in support of the racemization theory of aging. 相似文献
84.
Birgit Batke Gerlinde Lauterbach Wilhelm Pritzkow Volkmar Voerckel Vladimir A. Belyakov 《Advanced Synthesis \u0026amp; Catalysis》1989,331(3):424-430
The products of the autoxidation of phenyl cyclopropane ( I ), phenyl cyclobutane ( II ), phenyl cyclopentane ( III ), phenyl cyclohexane ( IV ), phenyl cycloheptane ( V ) and phenyl cyclooctane ( VI ) were analyzed after reduction of the reaction mixtures with LiAlH4. As products of the attack on the α-C H bonds the corresponding 1-phenyl cycloalkanols and 1-phenyl alkan-1-ols were found. In the case of phenyl cyclopropane some SR2 ring opening probably takes place. The oxidabilities $ {\rm k}_{\rm p} /\sqrt {{\rm k}_{\rm t}} $, the chain termination constants kt, the absolute chain propagation constants kp and the relative chain propagation constant (kp)rel were determined for the phenyl cycloalkanes I — VI . As it is to be expected on the basis of the I-strain concept the autoxidation rate of phenyl cyclopentane ( III ) is considerably higher than that of phenyl cyclobutane ( II ) and phenyl cyclohexane ( IV ). 相似文献
85.
Alexander Balatskiy Ilia Ozhimalov Maria Balatskaya Alexandra Savina Julia Filatova Natalia Kalinina Vladimir Popov Vsevolod Tkachuk 《International journal of molecular sciences》2022,23(3)
The local development of atherosclerotic lesions may, at least partly, be associated with the specific cellular composition of atherosclerosis-prone regions. Previously, it was demonstrated that a small population of immature vascular smooth muscle cells (VSMCs) expressing both CD146 and neuron-glial antigen 2 is postnatally sustained in atherosclerosis-prone sites. We supposed that these cells may be involved in atherogenesis and can continuously respond to angiotensin II, which is an atherogenic factor. Using immunohistochemistry, flow cytometry, wound migration assay xCELLigence system, and calcium imaging, we studied the functional activities of immature VSMCs in vitro and in vivo. According to our data, these cells do not express nestin, CD105, and the leptin receptor. They are localized in atherosclerosis-prone regions, and their number increases with age, from 5.7% to 23%. Immature VSMCs do not migrate to low shear stress areas and atherosclerotic lesions. They also do not have any unique response to angiotensin II. Thus, despite the localization of immature VSMCs and the presence of the link between their number and age, our study did not support the hypothesis that immature VSMCs are directly involved in the formation of atherosclerotic lesions. Additional lineage tracing studies can clarify the fate of these cells during atherogenesis. 相似文献
86.
Nina Kunov Henrieta Havalov Gabriela Ondrovi
ov Barbora Stojkovi
ov Jacob A. Bauer Vladena Bauerov-Hlinkov Vladimir Pevala Eva Kutejov 《International journal of molecular sciences》2022,23(3)
Mitochondrial proteins are encoded by both nuclear and mitochondrial DNA. While some of the essential subunits of the oxidative phosphorylation (OXPHOS) complexes responsible for cellular ATP production are synthesized directly in the mitochondria, most mitochondrial proteins are first translated in the cytosol and then imported into the organelle using a sophisticated transport system. These proteins are directed mainly by targeting presequences at their N-termini. These presequences need to be cleaved to allow the proper folding and assembly of the pre-proteins into functional protein complexes. In the mitochondria, the presequences are removed by several processing peptidases, including the mitochondrial processing peptidase (MPP), the inner membrane processing peptidase (IMP), the inter-membrane processing peptidase (MIP), and the mitochondrial rhomboid protease (Pcp1/PARL). Their proper functioning is essential for mitochondrial homeostasis as the disruption of any of them is lethal in yeast and severely impacts the lifespan and survival in humans. In this review, we focus on characterizing the structure, function, and substrate specificities of mitochondrial processing peptidases, as well as the connection of their malfunctions to severe human diseases. 相似文献
87.
Vladimir P. Sotskov Nikita A. Pospelov Viktor V. Plusnin Konstantin V. Anokhin 《International journal of molecular sciences》2022,23(2)
Hippocampal place cells are a well-known object in neuroscience, but their place field formation in the first moments of navigating in a novel environment remains an ill-defined process. To address these dynamics, we performed in vivo imaging of neuronal activity in the CA1 field of the mouse hippocampus using genetically encoded green calcium indicators, including the novel NCaMP7 and FGCaMP7, designed specifically for in vivo calcium imaging. Mice were injected with a viral vector encoding calcium sensor, head-mounted with an NVista HD miniscope, and allowed to explore a completely novel environment (circular track surrounded by visual cues) without any reinforcement stimuli, in order to avoid potential interference from reward-related behavior. First, we calculated the average time required for each CA1 cell to acquire its place field. We found that 25% of CA1 place fields were formed at the first arrival in the corresponding place, while the average tuning latency for all place fields in a novel environment equaled 247 s. After 24 h, when the environment was familiar to the animals, place fields formed faster, independent of retention of cognitive maps during this session. No cumulation of selectivity score was observed between these two sessions. Using dimensionality reduction, we demonstrated that the population activity of rapidly tuned CA1 place cells allowed the reconstruction of the geometry of the navigated circular maze; the distribution of reconstruction error between the mice was consistent with the distribution of the average place field selectivity score in them. Our data thus show that neuronal activity recorded with genetically encoded calcium sensors revealed fast behavior-dependent plasticity in the mouse hippocampus, resulting in the rapid formation of place fields and population activity that allowed the reconstruction of the geometry of the navigated maze. 相似文献
88.
Alexander Panov Vladimir I. Mayorov Sergey Dikalov 《International journal of molecular sciences》2022,23(7)
We present evidence that metabolic syndrome (MetS) represents the postreproductive stage of the human postembryonic ontogenesis. Accordingly, the genes governing this stage experience relatively weak evolutionary selection pressure, thus representing the metabolic phenotype of distant ancestors with β-oxidation of long-chain fatty acids (FAs) as the primary energy source. Mitochondria oxidize at high-rate FAs only when succinate, glutamate, or pyruvate are present. The heart and brain mitochondria work at a wide range of functional loads and possess an intrinsic inhibition of complex II to prevent oxidative stress at periods of low functional activity. Kidney mitochondria constantly work at a high rate and lack inhibition of complex II. We suggest that in people with MetS, oxidative stress is the central mechanism of the heart and brain pathologies. Oxidative stress is a secondary pathogenetic mechanism in the kidney, while the primary mechanisms are kidney hypoxia caused by persistent hyperglycemia and hypertension. Current evidence suggests that most of the nongenetic pathologies associated with MetS originate from the inconsistencies between the metabolic phenotype acquired after the transition to the postreproductive stage and excessive consumption of food rich in carbohydrates and a sedentary lifestyle. 相似文献
89.
Alexei A. Kotov Sergei S. Bazylev Vladimir E. Adashev Aleksei S. Shatskikh Ludmila V. Olenina 《International journal of molecular sciences》2022,23(8)
The Y chromosome is one of the sex chromosomes found in males of animals of different taxa, including insects and mammals. Among all chromosomes, the Y chromosome is characterized by a unique chromatin landscape undergoing dynamic evolutionary change. Being entirely heterochromatic, the Y chromosome as a rule preserves few functional genes, but is enriched in tandem repeats and transposons. Due to difficulties in the assembly of the highly repetitive Y chromosome sequence, deep analyses of Y chromosome evolution, structure, and functions are limited to a few species, one of them being Drosophila melanogaster. Despite Y chromosomes exhibiting high structural divergence between even closely related species, Y-linked genes have evolved convergently and are mainly associated with spermatogenesis-related activities. This indicates that male-specific selection is a dominant force shaping evolution of Y chromosomes across species. This review presents our analysis of current knowledge concerning Y chromosome functions, focusing on recent findings in Drosophila. Here we dissect the experimental and bioinformatics data about the Y chromosome accumulated to date in Drosophila species, providing comparative analysis with mammals, and discussing the relevance of our analysis to a wide range of eukaryotic organisms, including humans. 相似文献