To evaluate the effect of intracanal medicaments on the push-out bond strength of Biodentine in comparison with DiaRoot BioAggregate (BA) when used as apical plugs. Forty single-rooted teeth were prepared using Peeso reamers. The samples were divided into four groups. The intracanal medicaments were applied to the root canals as follows: Group1: a combination of metronidazole–ciprofloxacin–cefaclor, Group2: a combination of metronidazole–ciprofloxacin, Group3: calcium hydroxide, and Group4: no medication. After 21 days, the medicaments were removed. The apical part of each root was horizontally sectioned into 1-mm thick slices. The samples were divided into two subgroups, and the following materials were placed: Biodentine, DiaRoot-BioAggregate. After 48-h incubation, the push-out bond strength was measured. The data were analyzed by a two-way ANOVA. Biodentine showed a significantly higher mean push-out bond strength value than DiaRoot-BioAggregate (P = 0.00). The medications have an effect on the push-out bond strength of both materials (P = 0.002). Biodentine showed better adhesive performance as an apical plug than DiaRoot-BioAggregate. 相似文献
This study concerns with the investigation of the effect of irradiation conditions on grafting of styrene into FEP films by the pre‐irradiation method. EPR spectroscopy was used to characterize the base polymer material regarding the trapped radical species and their concentration. Radiation‐induced changes in the chemical structure were studied by IR spectroscopy. Tensile strength and elongation at break as well as yield of grafting were found to be strongly influenced by irradiation temperature. Main‐chain scissions were identified to be the reason for the deterioration of the mechanical properties after radiation treatment at temperatures below glass transition temperature.
Palladium‐catalysed monophosphorylation of (R)‐2,2′‐bisperfluoroalkanesulfonates of BINOL (RF=CF3 or C4F9) by a diaryl phosphinate [Ar2P(O)H] followed by phosphine oxide reduction (Cl3SiH) then lithium diisopropylamide‐mediated anionic thia‐Fries rearrangement furnishes enantiomerically‐pure (R)‐2′‐diarylphosphino‐2′‐hydroxy‐3′‐perfluoralkanesulfonyl‐1,1′‐binaphthalenes [(R)‐ 8ab and (R)‐ 8g–j ], which can be further diversified by Grignard reagent (RMgX)‐mediated CF3‐displacement [→(R)‐ 8c–f ]. Coupling of (R)‐ 8a–j with (S)‐1,1′‐binaphthalene‐2,2′‐dioxychlorophosphine (S)‐ 9 generates 3′‐sulfonyl BINAPHOS ligands (R,S)‐ 10a–j in good yields (43–82%). These new ligands are of utlility in the asymmetric hydrophosphonylation of styrene ( 1 ) by 4,4,5,5‐tetramethyl‐1,3,2‐dioxaphospholane 2‐oxide ( 2 ), for which a combination of the chiral ligands with either [Pd(Cp)(allyl)] or [Pd(allyl)(MeCN)2]+/NaCH(CO2Me)2 proves to be a convenient and active pre‐catalyst system. A combination of an electron‐rich phosphine moiety and an electron‐deficient 3′‐sulfone moiety provides the best enantioselectivity to date for this process, affording the branched 2‐phenethenephosphonate, (−)‐iso‐ 3 , in up to 74% ee with ligand (R,S)‐ 10i , where Ar=p‐anisyl and the 3′‐SO2R group is triflone. 相似文献
Surface roughness is one of the most important parameters governing the shear strength of rock discontinuities. Roughness types may vary based on genesis, physico-mechanical, and mineralogical properties of rocks. In this study, granite samples representing three different weathering degrees were selected to evaluate the effects of surface roughness and weathering degree on shear strength. To this aim, we determined the profile roughness coefficient (PRC), profile roughness angle (PRA), and joint roughness coefficient (JRC) for the selected fresh and weathered granite joint samples. Values of PRC were in the range of about 1.043–1.073, and PRA and JRC varied in the ranges of 16.67–21.45 and 12–18, respectively. Weathering led to the increment of joint surface roughness of the selected granitic joints due to the higher resistance of quartz crystals in the weathered matrix. However, the increment in surface roughness did not result in an increase in the shear strength. On the contrary, the shear strength of discontinuities dramatically decreased. 相似文献