Being a new kind of nanomaterials, aromatic polyamide nanofibers (ANF) have been much highlighted in recent studies. We here demonstrate an isopropyl alcohol (IPA) accelerated chemical cleavage on poly (p-phenylene terephthalamide) chopped fibers, which provides an efficient preparation method of ANF. The comprehensive study on the processes accelerated by different alcohols revealed that the preparation time of ANF in the mixed medium of dimethyl sulfoxide (DMSO)-alcohol (20:1 in volume) was shorten to 45 min and 75 min for methanol (ethanol) and isopropanol, respectively. However, the nanofibers prepared in DMSO-IPA exhibited the minimum in axial and radial dimensions, providing the finest and most uniform diameter of 16 nm. The corresponding ANF films through vacuum assisted filtration also showed the highest tensile strength of 150 MPa, in comparison with those of the ANF films prepared using other alcohols, which were about 110 MPa. Furthermore, ANF/silicon hybrid films were prepared by the ionic ring-opening reaction followed by the alkoxysilane condensation and nanoparticle fabrication. By changing the organo functional groups in the alkoxysilane, the surface of the films were adjustable in a wide contact angle range from 56° (hydrophilic) to 150° (superhydrophobic), suggesting the amendable interfacial properties potential applicable to composite fabrication with most of the resin matrix. 相似文献
In otolaryngologic (or ophthalmologic) studies, each subject usually contributes information for each of two ears (or eyes), and the values from the two ears (or eyes) are generally highly correlated. Statistical procedures that fail to take into account the correlation between responses from two ears could lead to incorrect results. On the other hand, asymptotic procedures that overlook small sample designs, sparse data structures, or the discrete nature of data could yield unacceptably high type I error rates even when the intraclass correlation is taken into consideration. In this article, we investigate eight procedures for testing the equality of proportions in such correlated data. These test procedures will be implemented via the asymptotic and approximate unconditional methods. Our empirical results show that tests based on the approximate unconditional method usually produce empirical type I error rates closer to the pre-chosen nominal level than their asymptotic tests. Amongst these, the approximate unconditional score test performs satisfactorily in general situations and is hence recommended. A data set from an otolaryngologic study is used to illustrate our proposed methods. 相似文献
Spinel LiMn2O4 is a widely utilized cathode material for Li-ion batteries. However, its applications are limited by its poor energy density and power density. Herein, a novel hierarchical porous onion-like LiMn2O4(LMO) was prepared to shorten the Li+ diffusion pathway with the presence of uniform pores and nanosized primary particles. The growth mechanism of the porous onion-like LiMn2O4 was analyzed to control the morphology and the crystal structure so that it forms a polyhedral crystal structure with reduced Mn dissolution. In addition, graphene was added to the cathode (LiMn2O4/graphene) to enhance the electronic conductivity. The synthesized LiMn2O4/graphene exhibited an ultrahigh-rate performance of 110.4 mAh·g–1 at 50 C and an outstanding energy density at a high power density, maintaining 379.4 Wh·kg–1 at 25,293 W·kg–1. Besides, it shows durable stability, with only 0.02% decrease in the capacity per cycle at 10 C. Furthermore, the (LiMn2O4/graphene)/graphite full-cell exhibited a high discharge capacity. This work provides a promising method for the preparation of outstanding, integrated cathodes for potential applications in lithium ion batteries.