The design and realization of an online learning motion controller for a linear motor is presented, and its usefulness is evaluated. The controller consists of two components: (1) a model-based feedback component, and (2) a learning feedforward component. The feedback component is designed on the basis of a simple second-order linear model, which is known to have structural errors. In the design, an emphasis is placed on robustness. The learning feedforward component is a neural-network-based controller, comprised of a one-hidden-layer structure with second-order B-spline basis functions. Simulations and experimental evaluations show that, with little effort, a high-performance motion system can be obtained with this approach 相似文献
The present work mainly deals with the testing and modeling of a commercially-available copper indium diselenide (CIS) ST40 module from the former Siemens Solar Industries (SSI). For this purpose, a large quantity of current/voltage characteristics were measured in the Paul Scherrer Institute (PSI)’s photovoltaic test-facility under different cell temperatures, solar irradiation and air mass, AM, conditions. They were used to develop a semi-empirical efficiency model to correlate all measured data sets. The goal was to make available a model, allowing quick and accurate calculation of the performance of the CIS module under all relevant operating conditions.
For the undegraded state of the module, the efficiency model allowed us to deduce the efficiency at Standard Test Conditions, STC, and its temperature coefficient at STC, which were 11.58% and minus 0.050%/°C, respectively. The output of the undegraded module under STC was found to be 42.4 W, i.e., 6% higher than specified by the manufacturer (40 W). Furthermore, the efficiency does not decrease with increasing air mass. At a cell temperature of 25 °C and a relative air mass of 1.5, the module has a maximum in efficiency of 12.0% at an irradiance of about 650 W/m2. This indicates that the series-resistance losses become significant at higher irradiances. Hence, improving the transparent conducting oxide (TCO) electrode on the front side of the cells might lead to a higher output at high irradiances.
Identical testing and modeling were repeated after having exposed the module to real weather conditions for one year. We found that the STC efficiency was reduced by 9.0%, from 11.58 down to 10.54%. The temperature coefficient of the efficiency had changed from minus 0.050 %/°C to minus 0.039%/°C. These results indicate possible chemical changes in the semiconductor film. The output of the module at STC was reduced by 9.0% from 42.4 W down to 38.6 W.
Using meteorological data from a sunny site in the South of Jordan (Al Qauwairah) and the efficiency model presented here allows us to predict the yearly electricity yield of the CIS module in that area. Prior to degradation, the yield was found to be 362 kWh/m2 for the Sun-tracked module; and 265 kWh/m2 for the fix-installed module (South-oriented, at an inclination angle of 30°). After degradation the corresponding yields were found to be 334 and 241 kWh/m2; meaning losses of 8.4% and 9.5%, respectively. (Note: all units of energy, kWh, are referred to the active cell area.) Having available efficiency models for other module types, similar predictions of the yield can be made, facilitating the comparisons of the yearly yields of different module types at the same site. This in turn allows selecting the best module type for a particular site. 相似文献
Materials exhibiting exceptional mechanical properties can be fabricated from rigid polymers. In a spinning process, an oriented solution is solidified by the action of a nonsolvent, which induces crystallization of an oriented rigid polymer. Drying and heat treatment result in the final material having the desired properties. The effect of heat treatment on the morphology of poly(p-phenylene benzobisthiazole) (PBZT) films was studied by measurements of small-angle X-ray scattering (SAXS) and wide-angle X-ray diffraction (WAXD). Films were formed by coagulation in water. The wet films were dried with supercritical CO2 to maintain an open network structure. Coagulation in water resulted in formation of microfibrils having diameter of ∼9 nm. Heat-treatment at 600°C caused significant coalescence of microfibrils. The crystallite size was increased by heat treatment from a value that is smaller than the microfibrillar diameter indicating defects in chain packing, to a value comparable to the microfibrillar diameter. 相似文献
The title compounds were prepared from 2,4-dioxohexahydro-triazine (DHT) and the corresponding acid chlorides in the presence of sulphuric acid. They are active acylating agents against piperidine in dioxane as the solvent. Only the diacyl derivatives of DHT with acyl chain lengths up to C6 react with aqueous solutions of sodium perborate forming the corresponding peroxy acids. 相似文献
The products of the autoxidation of phenyl cyclopropane ( I ), phenyl cyclobutane ( II ), phenyl cyclopentane ( III ), phenyl cyclohexane ( IV ), phenyl cycloheptane ( V ) and phenyl cyclooctane ( VI ) were analyzed after reduction of the reaction mixtures with LiAlH4. As products of the attack on the α-C H bonds the corresponding 1-phenyl cycloalkanols and 1-phenyl alkan-1-ols were found. In the case of phenyl cyclopropane some SR2 ring opening probably takes place. The oxidabilities $ {\rm k}_{\rm p} /\sqrt {{\rm k}_{\rm t}} $, the chain termination constants kt, the absolute chain propagation constants kp and the relative chain propagation constant (kp)rel were determined for the phenyl cycloalkanes I — VI . As it is to be expected on the basis of the I-strain concept the autoxidation rate of phenyl cyclopentane ( III ) is considerably higher than that of phenyl cyclobutane ( II ) and phenyl cyclohexane ( IV ). 相似文献
Products of the reaction of propane-2-sulphonic acid p-cresylester with sodium butoxide in butanol are the sodium salt of propan-2-sulphonic acid, di-n-butyl ether, p-cresyl-n-butyl ether and p-cresol. The reaction proceeds via propane-2-sulphonic acid n-butylester which is formed from the starting compound by an elimination-addition (sulphene) mechanism. The elimination step is an E1-cB reaction. 相似文献