Exposure of a thin polymer film to a fluid can affect properties of the film such as the density and thickness. In particular in membrane technology, these changes can have important implications for membrane performance. Spectroscopic ellipsometry is a convenient technique for in situ studies of thin films, because of its noninvasive character and very high precision. The applicability of spectroscopic ellipsometry is usually limited to samples with well-defined interfacial regions, whereas in typical composite membranes, often substantial and irregular intrusion of the thin film into the pores of a support exists. In this work, we provide a detailed characterization of a polished porous alumina membrane support, using variable-angle spectroscopic ellipsometry in combination with atomic force microscopy and mercury porosimetry. Two Spectroscopic ellipsometry optical models are presented that can adequately describe the surface roughness of the support. These models consider the surface roughness as a distinct layer in which the porosity gradually increases toward the outer ambient interface. The first model considers the porosity profile to be linear; the second model assumes an exponential profile. It is shown that the models can be extended to account for a composite membrane geometry, by deposition of a thin polysulfone film onto the support. The developed method facilitates practicability for in situ spectroscopic ellipsometry studies of nonequilibrium systems, i.e., membranes under actual permeation conditions. 相似文献
Anthropogenic activities generate a high quantity of organic pollutants, which have an impact on human health and cause adverse environmental effects. Monitoring of many hazardous contaminations is subject to legal regulations, but some substances such as therapeutic agents, personal care products, hormones, and derivatives of common organic compounds are currently not included in these regulations. Classical methods of removal of organic pollutants involve economically challenging processes. In this regard, remediation with biological agents can be an alternative. For in situ decontamination, the plant-based approach called phytoremediation can be used. However, the main disadvantages of this method are the limited accumulation capacity of plants, sensitivity to the action of high concentrations of hazardous pollutants, and no possibility of using pollutants for growth. To overcome these drawbacks and additionally increase the efficiency of the process, an integrated technology of bacteria-assisted phytoremediation is being used recently. For the system to work, it is necessary to properly select partners, especially endophytes for specific plants, based on the knowledge of their metabolic abilities and plant colonization capacity. The best approach that allows broad recognition of all relationships occurring in a complex community of endophytic bacteria and its variability under the influence of various factors can be obtained using culture-independent techniques. However, for practical application, culture-based techniques have priority. 相似文献
ABSTRACTCommercially pure aluminium and two model aluminium–magnesium alloys were subjected to hydrostatic extrusion (HE). The microstructure of materials was observed using optical microscopy (OM). All materials were subjected to electrochemical corrosion tests in the 3.5?wt-% water solution of sodium chloride. The potentiodynamic polarisation measurements and electrochemical impedance spectroscopy were performed after samples’ immersion in open circuit potential. The surface of samples after corrosion examination was observed with the use of scanning electron microscopy. It was stated that all undeformed materials underwent pitting corrosion and further pits repassivation, while after HE pitting was also observed, but pit repassivation did not occur. This may be related to the microstructural changes caused by deformation, such as grain refinement. What is more, the pits character changed with the addition of a different amount of Mg to Al. Deterioration of corrosion resistance was also observed for all materials after HE. 相似文献
The aim of this study was to evaluate the effect of everolimus, a mammalian target of rapamycin (mTOR) inhibitor, on red blood cell parameters in the context of iron homeostasis in patients with tuberous sclerosis complex (TSC) and evaluate its effect on cell size in vitro. Everolimus has a significant impact on red blood cell parameters in patients with TSC. The most common alteration was microcytosis. The mean MCV value decreased by 9.2%, 12%, and 11.8% after 3, 6, and 12 months of everolimus treatment. The iron level declined during the first 3 months, and human soluble transferrin receptor concentration increased during 6 months of therapy. The size of K562 cells decreased when cultured in the presence of 5 μM everolimus by approximately 8%. The addition of hemin to the cell culture with 5 μM everolimus did not prevent any decrease in cell size. The stage of erythroid maturation did not affect the response to everolimus. Our results showed that the mTOR inhibitor everolimus caused red blood cell microcytosis in vivo and in vitro. This effect is not clearly related to a deficit of iron and erythroid maturation. This observation confirms that mTOR signaling plays a complex role in the control of cell size. 相似文献
The paper presents research work concerning difficult-to-cut materials turning and chipbreakers reliability in local operating features. Inconel 718 alloy was used as a sample material and two different chipbreakers were tested. The aim of the research was to check the efficiency of chipbreakers in the area of applications recommended by tool manufacturers. As a result, the algorithm for cutting data selection and correction which combines experiments and simulation processes concerning chip breakage effectiveness was built. To estimate chip forms in tests, the visual system equipped with a high-speed camera was used. The cutting forces measuring system provided information for verification of simulation results. The simulation based on the FEM was applied to estimate chip groove filling. Distributions of temperature and stresses on the tool rake face in the function of distance from the cutting edge were calculated. The paper gives recommendations for cutting data correction to achieve acceptable chip forms. 相似文献
Multi-material molding (MMM) enables the creation of multi-material mechanisms that combine compliant hinges, serving as revolute joints, and rigid links in a single part. There are three important challenges in creating these structures: (1) bonding between the materials used, (2) the ability of the hinge to transfer the required loads in the mechanism while allowing for the prescribed degree(s) of freedom, and (3) incorporating the process-specific requirements in the design stage. This paper presents the approach for design and fabrication of miniature compliant hinges in multi-material compliant mechanisms. The methodology described in this paper allows for the concurrent design of the part and the manufacturing process. For the first challenge, mechanical interlocking strategies are presented. For the second challenge, the development of a simulation-based optimization model of the hinge is presented, involving functional and manufacturing constrains. For the third challenge, the development of hinge positioning features and gate positioning constraints is presented. The developed MMM process is described, along with the main constraints and performance measures. This includes the process sequence, the mold cavity design, gate selection, and runner system development. A case study is presented to demonstrate the feasibility of creating multi-material mechanisms with miniature hinges serving as joints through MMM process. The approach described in this paper was utilized to design a drive mechanism for a flapping wing micro air vehicle. The methods described in this paper are applicable to any lightweight, load-bearing compliant mechanism manufactured using multi-material injection molding. 相似文献
The article presents results of the investigation of the quantitative evaluation of the degree of damage, described by the measure of accumulated plastic strain obtained in a static tensile test, using selected non-destructive techniques. Inconel 718 alloy was tested. The tests were conducted using a new type of specimens of variable cross-sectional area of measuring part. This provided a continuous distribution of plastic strain in the gage part of the specimen. The permanent deformation that varies along the sample axis enables an analysis of damage induced by a plastic deformation. The proposed method enables replacing the series of specimens by one sample. Degradation of the alloy corresponds with the changes of the electromagnetic properties of the material—the phase angle of the complex impedance of the eddy current, as well as with acoustics properties of material—acoustic birefringence of ultrasonic waves. It allows to determine the degree of damage of the material using noninvasive, non-destructive methods. Using the damage parameter proposed by Johnson it is possible to obtain the correlation between the non-destructive results and a damage degree of the material. The presented testing method delivers information about changes in the material structure caused by permanent deformation.
Modeling of real physical processes by numerical methods is highly time-consuming and requires significant computational capacity. In some cases, tens or even hundreds of hours of high-power computing are needed to virtually model a real process that lasts one second. Processes that take many hours, such as drying, pose an even greater challenge. This problem can be solved in two ways: by using faster computers (such as computing clusters) or by significantly simplifying the modeled process (its geometry, physical phenomena, or the impact of individual factors). For this reason, all methods which speed up or minimize the number of simulations required to achieve the research objective should be analyzed. This article focuses on the latter approach, and it proposes a simple method for predicting the responses of a numerical model (values of any output parameter) to changes in input values (values of any input parameter). This method requires a base model, such as a numerical model which is qualitatively and quantitatively consistent with experimental observations, and a sensitivity analysis. This article discusses the mathematical and logical premises for the discussed model, and it proposes two methods for predicting numerical simulation results. Those methods are illustrated with examples which analyze the behavior of the Eulerian Multiphase Model and describe phase interactions based on Gidaspow's approach. The discussed example relies on data from a series of articles published by the authors in Drying Technology. This article was inspired by the observations made during a time-consuming process of modeling a spouted bed grain dryer, which was described in the above publications. The objective of this study was to discuss the advantages and possibilities created by sensitivity analyses of numerical models and to encourage their practical application. 相似文献