Atherosclerotic plaque rupture results in thrombus formation and vessel occlusion, and is the leading cause of death worldwide. There is a pressing need to identify plaque vulnerability for the treatment of carotid and coronary artery diseases. Nanomaterials with enzyme-like properties have attracted significant interest by providing biological, diagnostic and prognostic information about the diseases. Here we showed that bioengineered magnetoferritin nanoparticles (M-HFn NPs) functionally mimic peroxidase enzyme and can intrinsically recognize plaque-infiltrated active macrophages, which drive atherosclerotic plaque progression and rupture and are significantly associated with the plaque vulnerability. The M-HFn nanozymes catalyze the oxidation of colorimetric substrates to give a color reaction that visualizes the recognized active macrophages for one-step pathological identification of plaque vulnerability. We examined 50 carotid endarterectomy specimens from patients with symptomatic carotid disease and demonstrated that the M-HFn nanozymes could distinguish active macrophage infiltration in ruptured and high-risk plaque tissues, and M-HFn staining displayed a significant correlation with plaque vulnerability (r = 0.89, P < 0.0001).
ABSTRACT In recent years, the exploration of a practical strategy for novel energetic molecules with high energy and low sensitivity is very desirable but highly challenging. Novel ionic energetic molecules have attracted much attention in this area due to their prominent advantages including low sensitivities, high thermal stability, and excellent energy performances. Herein, five different ionic energetic molecules based on new monovalent and divalent 4-oxyl-3,5-dinitropyrazolate moieties with enhanced oxygen balance have been synthesized, characterized and evaluated as potential high-energy materials. Thermal stability, sensitivities and energy output test were measured and studied in detail. The heats of formation and energetic parameters were calculated by using Gaussian 09 suite of programs and EXPLO 5 code. The results suggest that all as-prepared new molecules exhibit good thermal stability with high decomposition temperature (3, 231°C; 5, 160°C; 6, 185°C; 7, 180°C; 8, 213°C), and relative low sensitivity (IS > 20 J, FS = 324 N). Inheriting the significant oxygen content of monovalent and divalent 4-oxyl-3,5-dinitropyrazolate moieties, they also possess good energy properties (vD = 8238 ~ 9208 m s?1, P = 26.8 ~ 36.7 GPa, Vo = 481.8 ~ 959.4 L kg?1), which make them competitive high-energy materials. 相似文献