A variational model for image segmentation consists of a data term and a regularization term. Usually, the data term is chosen as squared $\text{ L }_{2}$ norm, and the regularization term is determined by the prior assumption. In this paper, we present a novel model in the framework of MAP (maximum a posteriori). A new iteratively reweighted $\text{ L }_{2}$ norm is used in the data term, which shares the advantages of $\text{ L }_{2}$ and mixed $\text{ L }_{21}$ norm. An edge weighting function is addressed in the regularization term, which enforces the ability to reduce the outlier effects and preserve edges. An improved region-based graph cuts algorithm is proposed to solve this model efficiently. Numerical experiments show our method can get better segmentation results, especially in terms of removing outliers and preserving edges. 相似文献
This paper proposes a reversible data hiding scheme for natural images. A hybrid prediction mechanism is utilized in order to produce prediction errors as many as possible. The cover image excluding a seed pixel is partitioned into four non-overlapping segments, and four predictors are tailored for each of them. As a result, most prediction errors concentrate around zero in prediction error histogram. Besides, an interleaving histogram modification mechanism is presented such that the capacity is enhanced and easier to be finely tuned in contrast to some previous approaches. Third, a single seed pixel recovery strategy is introduced. Experimental results show the effectiveness of the proposed method. 相似文献
Based on the mode coupling theory, a TE01—TM11 mode converter was designed and optimal results were obtained. In this paper, bandwidth of mode converter with axis exponential structure is the largest, and mode converter with axis sinusoidal structure is the most compact in the case of the center frequency is 28GHz and the waveguide radius is 16mm. If the bending angle between input port and output port of mode converter was demanded for 90°, mode converter with axis parabola structure had the characteristics of compact structure, higher mode purity and larger relative bandwidth. Meanwhile, we found that the converter could be also used as TE11 mode transition with transmission efficiency above 99%. But due to bending angle of this structure was restricted, its center frequency and waveguide radius had the obvious corresponding relation. 相似文献
The article presents the buck converter for the application on headlights of vehicle with chip-level design. The LED components are used as for lighting source, which near/far lights are controlled with high-current switching circuit in the chip. The level-shift circuit and its current driver is proposed to control the input of high-voltage power MOS. The bypass method is presented to reduce the transient time as load current changes suddenly. The input voltage widely ranges from 8 to 21 V while keeping a stable output voltage with 6 V. The chip current can output from 20 to 1500 mA with excellent regulation. This chip had been implemented with TSMC0.25 µm HV- process, and the size of the circuit layout is about 8.6 mm2, where includes power switch and far/near lighting switches. Measurements show that peak efficiency can achieve 86.3%. The power regulation is excellent, where the load regulation is only 0.3%, and the line regulation is only 0.5%.
This study addresses two key issues, stability and efficiency, of polymer solar cells based on blended poly(3‐hexylthiophene) (P3HT) and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) by demonstrating a film‐forming process that involves low‐temperature drying (?5 °C) and subsequent annealing of the active layer. The low‐temperature process achieves 4.70% power conversion efficiency (PCE) and ~1250 h storage half‐life at 65 °C, which are significant improvements over the 3.39% PCE and ~143 h half‐life of the regular room‐temperature process. The improvements are attributed to the enhanced nucleation of P3HT crystallites as well as the minimized separation of the P3HT and PCBM phases at the low drying temperature, which upon post‐drying annealing results in a morphology consisting of small PCBM‐rich domains interspersed within a densely interconnected P3HT crystal network. This morphology provides ample bulk‐heterojunction area for charge generation while allowing for facile charge transport; moreover, the P3HT crystal network serves as an immobile frame at heating temperatures less than the melting point (Tm) of P3HT, thus preventing PCBM/P3HT phase separation and the corresponding device degradation. 相似文献
Support vector machine (SVM) active learning plays a key role in the interactive content‐based image retrieval (CBIR) community. However, the regular SVM active learning is challenged by what we call “the small example problem” and “the asymmetric distribution problem.” This paper attempts to integrate the merits of semi‐supervised learning, ensemble learning, and active learning into the interactive CBIR. Concretely, unlabeled images are exploited to facilitate boosting by helping augment the diversity among base SVM classifiers, and then the learned ensemble model is used to identify the most informative images for active learning. In particular, a bias‐weighting mechanism is developed to guide the ensemble model to pay more attention on positive images than negative images. Experiments on 5000 Corel images show that the proposed method yields better retrieval performance by an amount of 0.16 in mean average precision compared to regular SVM active learning, which is more effective than some existing improved variants of SVM active learning. 相似文献