全文获取类型
收费全文 | 184466篇 |
免费 | 16370篇 |
国内免费 | 8707篇 |
专业分类
电工技术 | 11973篇 |
技术理论 | 13篇 |
综合类 | 11965篇 |
化学工业 | 30209篇 |
金属工艺 | 10209篇 |
机械仪表 | 11643篇 |
建筑科学 | 14163篇 |
矿业工程 | 5593篇 |
能源动力 | 5441篇 |
轻工业 | 12814篇 |
水利工程 | 3457篇 |
石油天然气 | 11077篇 |
武器工业 | 1459篇 |
无线电 | 22057篇 |
一般工业技术 | 21957篇 |
冶金工业 | 8900篇 |
原子能技术 | 1974篇 |
自动化技术 | 24639篇 |
出版年
2024年 | 950篇 |
2023年 | 3559篇 |
2022年 | 6639篇 |
2021年 | 8867篇 |
2020年 | 6666篇 |
2019年 | 5257篇 |
2018年 | 5956篇 |
2017年 | 6674篇 |
2016年 | 5924篇 |
2015年 | 7904篇 |
2014年 | 9771篇 |
2013年 | 11615篇 |
2012年 | 12609篇 |
2011年 | 13285篇 |
2010年 | 11291篇 |
2009年 | 10646篇 |
2008年 | 10147篇 |
2007年 | 9348篇 |
2006年 | 9569篇 |
2005年 | 8151篇 |
2004年 | 5423篇 |
2003年 | 4565篇 |
2002年 | 4097篇 |
2001年 | 3705篇 |
2000年 | 3611篇 |
1999年 | 4224篇 |
1998年 | 3512篇 |
1997年 | 2987篇 |
1996年 | 2784篇 |
1995年 | 2235篇 |
1994年 | 1830篇 |
1993年 | 1307篇 |
1992年 | 1051篇 |
1991年 | 791篇 |
1990年 | 574篇 |
1989年 | 471篇 |
1988年 | 367篇 |
1987年 | 254篇 |
1986年 | 211篇 |
1985年 | 131篇 |
1984年 | 116篇 |
1983年 | 86篇 |
1982年 | 86篇 |
1981年 | 68篇 |
1980年 | 67篇 |
1979年 | 29篇 |
1978年 | 25篇 |
1977年 | 24篇 |
1976年 | 26篇 |
1975年 | 16篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Xinzhen Lu Yifeng Cheng Menghao Li Yucheng Zou Cheng Zhen Duojie Wu Xianbin Wei Xiangyan Li Xuming Yang Meng Gu 《Advanced functional materials》2023,33(12):2212847
Solid-state lithium metal batteries (SSLMBs) are a promising candidate for next-generation energy storage systems due to their intrinsic safety and high energy density. However, they still suffer from poor interfacial stability, which can incur high interfacial resistance and insufficient cycle lifespan. Herein, a novel poly(vinylidene fluoride‑hexafuoropropylene)-based polymer electrolyte (PPE) with LiBF4 and propylene carbonate plasticizer is developed, which has a high room-temperature ionic conductivity up to 1.15 × 10−3 S cm−1 and excellent interfacial stability. Benefitting from the stable interphase, the PPE-based symmetric cell can operate for over 1000 h. By virtue of cryogenic transmission electron microscopy (Cryo-TEM) characterization, the high interfacial compatibility between Li metal anode and PPE is revealed. The solid electrolyte interphase is made up of an amorphous outer layer that can keep intimate contact with PPE and an inner Li2O-dominated layer that can protect Li from continuous side reactions during battery cycling. A LiF-rich transition layer is also discovered in the region of PPE close to Li metal anode. The feasibility of investigating interphases in polymer-based solid-state batteries via Cryo-TEM techniques is demonstrated, which can be widely employed in future to rationalize the correlation between solid-state electrolytes and battery performance from ultrafine interfacial structures. 相似文献
992.
993.
Yang Shi Jue Shi Yuan Sun Qiqi Liu Chun Zhang Changyu Shao Kang Yu Mingjie Ge Rui Mi Jingyi Gu Wenzhi Wu Weiying Lu Zhuo Chen Yong He Ruikang Tang Zhijian Xie 《Advanced functional materials》2023,33(40):2301099
An ideal craniofacial bone repair graft shall not only focus on the repair ability but also the regeneration of natural architecture with occlusal loads-related function restoration. However, such functional bone tissue engineering scaffold has rarely been reported. Herein, a hierarchical 3D graft is proposed for rebuilding craniofacial bone with both natural structure and healthy biofunction reconstruction. Inspired by the bone healing process, an organic–inorganic nanoink with ultrasmall calcium phosphate oligomers and bone morphogenetic protein-2 incorporated is developed for spatiotemporal guidance of new bone. Based on such homogeneous nanoink, a biomimetic graft, including a cortical layer containing Haversian system, and a cancellous layer featured with triply periodic minimum surface macrostructures, is fabricated via projection-based 3D printing method, and the layers are loaded with distinct concentrations of bioactive factors for regenerating new bone with gradient density. The graft exhibits excellent osteogenic and angiogenic potential in vitro, and accelerates revascularization and reconstructs neo-bone with original morphology in vivo. Benefiting from such natural architecture, loading force is widely transferred with reduced stress concentration around the inserted dental implant. Taken from native physiochemical and structural cues, this wstudy provides a novel strategy for functional tissue engineering through designing function-oriented biomaterials. 相似文献
994.
Geonwoo Kang Minkyung Kim Huisuk Yang Jiwoo Shin Jeeho Sim Hyeri Ahn Mingyu Jang Youseong Kim Hye Su Min Hyungil Jung 《Advanced functional materials》2023,33(11):2370066
Dissolving microneedle (DMN) is an attractive alternative to parenteral and enteral drug administration owing to its painless self-administration and safety due to non-generation of medical waste. For reproducible and efficient DMN administration, various DMN application methods, such as weights, springs, and electromagnetic devices, have been studied. However, these applicators have complex structures that are complicated to use and high production costs. In this study, a latch applicator that consists of only simple plastic parts and operates via thumb force without any external complex device is developed. Protrusion-shaped latches and impact distances are designed to accumulate thumb force energy through elastic deformation and to control impact velocity. The optimized latch applicator with a pressing force of 25 N and an impact velocity of 5.9 m s−1 fully inserts the drug-loaded tip of the two-layered DMN into the skin. In an ovalbumin immunization test, DMN with the latch applicator shows a significantly higher IgG antibody production rate than that of intramuscular injection. The latch applicator, which provides effective DMN insertion and a competitive price compared with conventional syringes, has great potential to improve delivery of drugs, including vaccines. 相似文献
995.
Xiaolei Li Zifeng Lin Na Jin Lei Sun Xiaojiao Yang Ying Liu 《Advanced functional materials》2023,33(20):2214667
Polyoxometalates are intriguing high-capacity anode materials for alkali-metal-ion storage due to their multi-electron redox capabilities and flexible structure. However, their poor electrical conductivity and high working voltage severely restrict their practical application. Herein, the dinuclear polyoxovanadate Sr2V2O7·H2O with unusually high electrical conductivity is reported as a promising anode material for lithium-ion batteries. During the initial lithiation process, the Sr2V2O7·H2O anode experiences an electrochemically induced crystalline-to-amorphous transition. The resulting amorphous structure provides high redox activity and fast reaction kinetics via reversible V4.9+/V2.8+ redox couple through the intercalation mechanism. Furthermore, when coupled with the LiFePO4 cathode, the strong V O bonds of the amorphous anode provide excellent structural stability, with the full-cell capable of performing >12 000 cycles with a capacity retention of 72%. Another advantage of Sr2xV2O7-δ·yH2O (0.5 ≤ x ≤ 1.0) is its composition adjustability, which enables delicately regulating the Sr vacancy content without destroying the structure. The defect Sr2xV2O7-δ·yH2O (x = 0.5) electrodes show significantly improved specific capacity and rate capability without sacrificing other key properties, delivering a high specific capacity of 479 mAh g-1 at 0.1 mA cm-2 and 41.9% of its capacity in 2 min. Overall, the preliminary study points the way forward for the facile preparation of high-quality polyoxometalates for advanced energy storage applications and beyond. 相似文献
996.
Ying-Xia Du Qiao Yang Wang-Ting Lu Qing-Yu Guan Fei-Fei Cao Geng Zhang 《Advanced functional materials》2023,33(27):2300895
Single metal atom isolated in nitrogen-doped carbon materials (M N C) are effective electrocatalysts for oxygen reduction reaction (ORR), which produces H2O2 or H2O via 2-electron or 4-electron process. However, most of M N C catalysts can only present high selectivity for one product, and the selectivity is usually regulated by complicated structure design. Herein, a carbon black-supported Co N C catalyst (CB@Co N C) is synthesized. Tunable 2-electron/4-electron behavior is realized on CB@Co-N-C by utilizing its H2O2 yield dependence on electrolyte pH and catalyst loading. In acidic media with low catalyst loading, CB@Co N C presents excellent mass activity and high selectivity for H2O2 production. In flow cell with gas diffusion electrode, a H2O2 production rate of 5.04 mol h−1 g−1 is achieved by CB@Co N C on electrolyte circulation mode, and a long-term H2O2 production of 200 h is demonstrated on electrolyte non-circulation mode. Meanwhile, CB@Co N C exhibits a dominant 4-electron ORR pathway with high activity and durability in pH neutral media with high catalyst loading. The microbial fuel cell using CB@Co N C as the cathode catalyst shows a peak power density close to that of benchmark Pt/C catalyst. 相似文献
997.
Jiaqi Ke Zhipeng Wen Yang Yang Rong Tang Yongchao Tang Minghui Ye Xiaoqing Liu Yufei Zhang Cheng Chao Li 《Advanced functional materials》2023,33(26):2301129
Artificial interface layer engineering is an efficacious modification strategy for protecting zinc anode from dendrite growth and byproducts formation. However, the high bulk ionic conductivity of most artificial interfacial layers is mainly contributed by the movement of anions (SO42−), which is the source of parasitic reactions on zinc anode. Herein, a high zinc ion donor transition (σZn2+ = 3.89 × 10−2 S cm−1) imidazole polymeric ionic liquid interface layer (1-carboxymethyl-3-vinylimidazolium bromide monomer, CVBr) for Zn metal protection is designed. The N+ atom of imidazole rings is connected by chains to form the cavities and the anions are confined within these cavities. Thus, the hindering effect of surrounding units on the anions leads to the subdiffusive regime, which inhibits the diffusion of SO42− in interface and increases Zn2+ transference number. Besides, the polycation-anion coordination mechanism of PolyCVBr ensures accelerated Zn2+ transition and realizes rapid internal Zn2+ migration channel. As a result, the Zn@CVBr||AM symmetry cells deliver high bulk ionic conductivity (4.42 × 10−2 S cm−1) and high Zn2+ transference number (tZn2+ = 0.88) simultaneously. The Zn@CVBr||AM-NaV3O8 pouch cells display the capacity retention of 88.9% after 190 cycles under 90° bending, verifying their potential practical application. 相似文献
998.
Chunliu Xu Weibo Hua Qinghua Zhang Yuan Liu Rongbin Dang Ruijuan Xiao Jin Wang Zhao Chen Feixiang Ding Xiaodong Guo Chao Yang Liangrong Yang Junmei Zhao Yong-Sheng Hu 《Advanced functional materials》2023,33(33):2302810
Na superionic conductor of Na3MnTi(PO4)3 only containing high earth-abundance elements is regarded as one of the most promising cathodes for the applicable Na-ion batteries due to its desirable cycling stability and high safety. However, the voltage hysteresis caused by Mn2+ ions resided in Na+ vacancies has led to significant capacity loss associated with Mn reaction centers between 2.5–4.2 V. Herein, the sodium excess strategy based on charge compensation is applied to suppress the undesirable voltage hysteresis, thereby achieving sufficient utilization of the Mn2+/Mn3+ and Mn3+/Mn4+ redox couples. These findings indicate that the sodium excess Na3.5MnTi0.5Ti0.5(PO4)3 cathode with Ti4+ reduction has a lowest Mn2+ occupation on the Na+ vacancies in its initial composition, which can improve the kinetics properties, finally contributing to a suppressed voltage hysteresis. Based on these findings, it is further applied the sodium excess route on a Mn-richer phosphate cathode, which enables the suppressed voltage hysteresis and more reversible capacity. Consequently, this developed Na3.6Mn1.15Ti0.85(PO4)3 cathode achieved a high energy density over 380 Wh kg−1 (based on active substance mass of cathode) in full-cell configurations, which is not only superior to most of the phosphate cathodes, but also delivers more application potential than the typical oxides cathodes for Na-ion batteries. 相似文献
999.
Lubin Yang Xiaowei Wang Xiaomin Cheng Yongzheng Zhang Cheng Ma Yayun Zhang Jitong Wang Wenming Qiao Licheng Ling 《Advanced functional materials》2023,33(38):2303705
Lithium-sulfur batteries (LSBs) suffer from uncontrollable shuttling behavior of lithium polysulfides (LiPSs: Li2Sx, 4 ≤ x ≤8) and the sluggish reaction kinetics of bidirectional liquid-solid transformations, which are commonly coped through a comprehensive adsorption-catalysis strategy. Herein, a unique Fe N V pre-coordination is introduced to regulate the content of “dissociative Fe3+” in liquid phase, realizing the successful construction of N-doped micro-mesoporous “urchin-like” hollow carbon nanospheres decorated with single atom Fe-N4 sites and VN nanoparticles (denoted as SA-Fe/VN@NMC). The strong chemisorption ability toward LiPSs and catalyzed Li2S decomposition behavior on VN, along with the boosted reaction kinetics for sulfur reduction on SA-Fe sites are experimentally and theoretically evidenced. Moreover, the nanoscale-neighborhood distribution of VN and SA-Fe active sites presents synergistic effect for the anchoring-reduction-decomposition process of sulfur species. Thus SA-Fe/VN@NMC presents an optimized adsorption-catalysis effect for the whole sulfur conversion. Therefore, the SA-Fe/VN@NMC based Li-S cells exhibit high cyclic stability (a low decay of 0.024% per cycle over 700 cycles at 1 C, sulfur content: 70 wt%) and considerable rate performance (683.2 mAh g−1 at 4 C). Besides, a high areal capacity of 5.06 mAh cm−2 is retained after 100 cycles under the high sulfur loading of 5.6 mg cm−2. This work provides a new perspective to design the integrated electrocatalysts comprising hetero-formed bimetals in LSBs. 相似文献
1000.
遗传变异是生命的基本特征,遗传变异与表型差异之间的关系,是现代生物学的一个基本问题。由基因决定生物体的遗传特征和主要个体差异的观念正在逐渐改变,过去几年的许多研究显示,基因组中大尺度的结构变异与个体的表型差异和疾病等有一定的关联。有关遗传变异和表型多样性的研究,需要比较生物体个体基因组间的各种不同。利用NGS数据全面分析结构变异的技术目前仍然不成熟。因此本文根据生物学知识,利用高通量测序数据,对植物基因组结构变异的识别问题深入系统的研究,提出新的结构变异识别方法和精确的断点预测方法。 相似文献