首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   0篇
电工技术   1篇
化学工业   12篇
金属工艺   5篇
机械仪表   18篇
能源动力   1篇
轻工业   4篇
无线电   8篇
一般工业技术   23篇
冶金工业   10篇
自动化技术   4篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   3篇
  2019年   1篇
  2018年   2篇
  2017年   4篇
  2016年   3篇
  2015年   1篇
  2014年   5篇
  2013年   5篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2008年   4篇
  2007年   3篇
  2006年   5篇
  2005年   1篇
  2004年   2篇
  2002年   1篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1996年   4篇
  1995年   2篇
  1994年   5篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1974年   2篇
  1973年   1篇
排序方式: 共有86条查询结果,搜索用时 93 毫秒
61.
Thin sheets of titanium alloys are widely used in aerospace and automotive industries for specific applications. The creation of micro holes with requisite hole quality in thin sheets of these alloys using energy of electric discharge is a challenging task for manufacturing engineers. Hole sinking electrical discharge micromachining (HS-EDMM) is one of the most promising micromachining processes to create symmetrical and non-symmetrical micro holes. The present paper is related to selection of optimum parameter settings for obtaining maximum material removal, minimum tool wear and minimum hole taper in HS-EDMM. In this paper an attempt has been made to develop an integrated model (ANN-GRA-PCA) of single hidden layer back propagation neural network (BPNN) for prediction and grey relational analysis (GRA) coupled with principal component analysis (PCA) hybrid optimization strategy with multiple responses of HSEDMM of Ti-6Al-4V. Experiments have been conducted to generate dataset for training and testing of the network where input parameters consist of gap voltage, capacitance of capacitor and the resulting performance parameters are represented by material removal rate (MRR), tool wear rate (TWR), and hole taper (Ta). The results indicate that the integrated model is capable to predict and optimize process performance with reasonable accuracy under varied operating conditions of HS-EDMM. The proposed approach would be extendable to other configurations of EDMM processes for different materials.  相似文献   
62.
The authors report one operated case of traumatic sternal segmental dislocation in a child, and propose a mechanism for this uncommon lesion. A fourteen year old boy was admitted in emergency for anterior chest pain, occurring during an exercise in parallel bars without any fall. X ray showed traumatic dislocation of the upper sternal segment. After 12 hours, because of bad clinical tolerance (pain, dyspnea with sweats and disphagia) reduction and plate stabilization (Senegas plate) was performed with immediate pain relief. The boy returned to school after 10 days. Plate was removed two months later after healing, with good clinical and radiological results. According to rare published cases, conservative treatment can be proposed in very young children because of dislocation remodeling. By others, in case of bad tolerance, surgical treatment is suggested despite the inconvenient of device's removal. The originality of this case is the indirect lesion mechanism. Hypothesis is given by authors. Treatment by plate is easy and gives immediate pain relief with good clinical and radiological results in teen-agers.  相似文献   
63.
Compact multiple antennas are attracting much attention because of the rapid growth of the wireless multiple input multiple output communication systems. An important challenge in multiple antenna system is mutual coupling effects. A brief review of reduction of mutual coupling in antenna arrays by using metamaterial is presented. Different types of metamaterial structures like electromagnetic band gap substrate, defected ground structure, split ring resonator, complimentary split ring resonator, soft surfaces/high impedance surface and mender line structure are described along with their operational principles. Whereas the problems associated along with the comparison and comments on their scope of applications are analyzed.  相似文献   
64.
The metal laser sintering (MLS) is used to make strong or hard metallic models for tools and dies directly from metallic powders. Thermal distortion is the serious problem after cooling of the solidified part rapidly. Uncontrolled temperature distribution in the metallic powder layer leads to thermal distortion of the solidified part. The study of temperature distribution within the metallic layer during MLS is important from the quality of the layer point of view.The high temperature generated in the powder layer leads to thermal distortion of the part and causes thermal as well as residual stresses in the part. In this paper the powder layer is assumed to be subjected to plane stress type of temperature variation and a transient finite element method-based thermal model has been developed to calculate the temperature distribution within a single metallic layer during MLS. A finite element code has been developed and validated with the known results from the literature.The obtained results of temperature distribution show the temperature and temperature gradient variation along X- and Y-axis. The effect of process parameters such as laser power, beam diameter, laser on-time, laser off-time and hatch spacing on temperature distribution within a model made of titanium during MLS is studied. The results computed by the present model agree with experimental results. Temperature increases with increase in laser power and laser on-time but temperature decreases with increase in laser off-time and hatch spacing.  相似文献   
65.
In modern industry, machinery must become increasingly flexible and automatic. In order to increase productivity, enhance quality and reduce cost, machine tools have to work free of any failure. When a failure occurs in a machine tool, it is necessary to identify the causes as early as possible. Machine tool condition monitoring is very important to achieve this goal. Condition monitoring is generally used on the critical subsystem of any machine tool. This paper endeavors to focus on the condition monitoring aspects on the machine tool element. In the present study, a critical subsystem has been identified based on the failure data analysis. Condition monitoring techniques like vibration monitoring, acoustic emission, Shock Pulse Method (SPM) and surface roughness have been successfully used for fault identification.  相似文献   
66.
The cutting performance of an ultrasonic machining machine (USM) depends primarily on the ability of the design of the acoustic horn (also known as concentrator or tool holder). A horn is a waveguide-focusing device with a cross-sectional area that decreases from the transducer end to the toe end. It amplifies the input amplitude of vibrations so that at the output end the amplitude is sufficiently large for machining. In the present work, a finite element method (FEM) design procedure has been developed for the design of a horn for rotary ultrasonic machining (RUM). The double conical horn shape has taken as a domain with a hole at the tip for the cooling purpose. The analysis of the various stress components in the horn domain has been studied. The stresses at the middle of the horn are found to be maximum but it is within the allowable stress of the horn material due to the sudden change in the area of the horn. The stresses on the horn for various frequencies are also studied and concluded that at resonance condition the stress is minimum.  相似文献   
67.
Manufacturing engineers are facing new challenges during machining of electrically nonconducting or partially conducting materials such as glass, quartz, ceramics, and composites. Traveling wire electrochemical spark machining (TW-ECSM), a largely unknown technology, has been applied successfully for cutting these types of materials. However, hardly any theoretical work has been reported related to machining performance of TW-ECSM process. The present work is an attempt in this direction. In the present work, a 3-D finite element transient thermal model has been developed to estimate the temperature field and material removal rate (MRR) due to Gaussian distributed input heat flux of a spark during TW-ECSM. First, the developed code calculates the temperature field in the workpiece and then MRR is calculated using this temperature field. The calculated MRR has been compared with the experimental MRR for verifying the approach. Computational experiments have been performed for the determination of energy partition and spark radius of a single spark. The effects of various process parameters such as energy partition, duty factor, spark radius, and ejection efficiency on MRR have been reported. It has been found that MRR increases with increase in energy partition, duty factor, and ejection efficiency but decreases with increase in spark radius.  相似文献   
68.
YBa2SnO5·5 has been synthesized and sintered as single phase material for its use as substrate for both YBCO and BiSCCO superconductors. YBa2SnO5·5 has a complex cubic perovskite (A2BB’O6) structure with the lattice constanta = 8·430 Å. The dielectric constant and loss factor of YBa2SnO5·5 are in a range suitable for its use as substrate for microwave applications. YBa2SnO5·5 is found to be chemically compatible with both YBCO and BiSCCO superconductors. The thick film of YBCO screen printed on polycrystalline YBa2SnO5·5 substrate gave aT c(0) of 92 K and a critical current density (J c) of 4 × 104 A/cm2 at 77 K. A screen printed BiSCCO thick film on YBa2SnO5·5 substrate gaveT c(0) = 110 K and current density 3 × 103 A/cm2 at 77 K.  相似文献   
69.
With the aid of scanning electron microscopy, cavitation and fracture behaviour in the Sn-Pb eutectic alloy, whose reduction in area of cross-section before failure is close to 100%, has been investigated in Region III of superplastic flow (where both the elongationto-fracture and the strain-rate sensitivity index decrease with increasing strain rate). It has been demonstrated that, although it decreases, grain-boundary sliding persists in this range as the strain rate is increased. At all strain rates the final failure was due to tearing by plastic flow of the inter-cavity ligaments, but the interlinkage of cavities along the graininterphase boundaries decreased with increasing strain rate. The features of cavitation and fracture did not differ much from an earlier study on a pseudo-single phase copper alloy, although copper alloys usually fail non-ideally, i.e., a large area of cross-section is present at fracture.  相似文献   
70.
Cylindrical Electrochemical Magnetic Abrasive Machining (C-EMAM) is an advanced abrasion-based hybrid machining process that constitutes magnetic abrasive machining and electrochemical dissolution. During the C-EMAM process, a large amount of material is removed from the peaks of the surface irregularities under the simultaneous effect of electrochemical dissolution, abrasion and abrasion-passivation synergism. This article presents the mathematical modeling for material removal and surface roughness during the C-EMAM process. Magnetic potential distribution between the two magnetic poles in which a cylindrical workpiece was placed was calculated using the finite element method. It was further used to find the forces acting on the ferromagnetic particles at contact surfaces. An empirical relation has been also developed considering the effect of electrochemical dissolution and abrasion-passivation synergism based on experiments conducted on a self-developed C-EMAM setup. Finally, a surface roughness model was developed by considering the total volume of material removed with the assumption of a triangular surface profile. The simulated results for material removal and surface roughness were validated using self-conducted experimental results. The computed results were found to be in good agreement with experimental observations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号