首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   180132篇
  免费   15740篇
  国内免费   8497篇
电工技术   11461篇
技术理论   13篇
综合类   11730篇
化学工业   29442篇
金属工艺   9966篇
机械仪表   11294篇
建筑科学   13793篇
矿业工程   5451篇
能源动力   5320篇
轻工业   12518篇
水利工程   3324篇
石油天然气   10748篇
武器工业   1410篇
无线电   21611篇
一般工业技术   21586篇
冶金工业   8768篇
原子能技术   1927篇
自动化技术   24007篇
  2024年   914篇
  2023年   3429篇
  2022年   6378篇
  2021年   8561篇
  2020年   6437篇
  2019年   5077篇
  2018年   5755篇
  2017年   6419篇
  2016年   5729篇
  2015年   7614篇
  2014年   9415篇
  2013年   11298篇
  2012年   12308篇
  2011年   12926篇
  2010年   11030篇
  2009年   10405篇
  2008年   9946篇
  2007年   9154篇
  2006年   9343篇
  2005年   8008篇
  2004年   5336篇
  2003年   4501篇
  2002年   4027篇
  2001年   3617篇
  2000年   3566篇
  1999年   4181篇
  1998年   3474篇
  1997年   2955篇
  1996年   2777篇
  1995年   2233篇
  1994年   1810篇
  1993年   1316篇
  1992年   1056篇
  1991年   790篇
  1990年   576篇
  1989年   468篇
  1988年   369篇
  1987年   252篇
  1986年   209篇
  1985年   130篇
  1984年   117篇
  1983年   86篇
  1982年   86篇
  1981年   68篇
  1980年   62篇
  1979年   29篇
  1978年   25篇
  1977年   24篇
  1976年   26篇
  1975年   16篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
951.
本文主要讲述了三菱变频器在数控机床中的应用,三菱变频器因其性能优越被广泛地应用在现代工业领域中,特别是它的矢量控制、直接转矩控制等,为数控机床的控制提供了传动的最佳解决方案,从而提高了数控机床的整机性能。  相似文献   
952.
Wang  Zongshan  Ding  Hongwei  Li  Bo  Bao  Liyong  Yang  Zhijun  Liu  Qianlin 《Wireless Personal Communications》2022,125(3):2167-2200

Maximizing network lifetime is the main goal of designing a wireless sensor network. Clustering and routing can effectively balance network energy consumption and prolong network lifetime. This paper presents a novel cluster-based routing protocol called EECRAIFA. In order to select the optimal cluster heads, Self-Organizing Map neural network is used to perform preliminary clustering on the network nodes, and then the relative reasonable level of the cluster, the cluster head energy, the average distance within the cluster and other factors are introduced into the firefly algorithm (FA) to optimize the network clustering. In addition, the concept of decision domain is introduced into the FA to further disperse cluster heads and form reasonable clusters. In the inter-cluster routing stage, the inter-cluster routing is established by an improved ant colony optimization (ACO). Considering factors such as the angle, distance and energy of the node, the heuristic function is improved to make the selection of the next hop more targeted. In addition, the coefficient of variation in statistics is introduced into the process of updating pheromones, and the path is optimized by combining energy and distance. In order to further improve the network throughput, a polling control mechanism based on busy/idle nodes is introduced during the intra-cluster communication phase. The simulation experiment results prove that under different application scenarios, EECRAIFA can effectively balance the network energy consumption, extend the network lifetime, and improve network throughput.

  相似文献   
953.
In this paper, we investigate the secrecy sum rate optimization problem for a multiple‐input single‐output (MISO) nonorthogonal multiple access (NOMA) system with orthogonal space‐time block codes (OSTBC). This system consists of a transmitter, two users, and a potential eavesdropper. The transmitter sends information by orthogonal space‐time block codes. The transmitter's precoder and the power allocation scheme are designed to maximize achievable secrecy sum rate subject to the power constraint at the transmitter and the minimum transmission rate requirement of the weak user. We consider two cases of the eavesdropper's channel condition to obtain positive secrecy sum rate. The first case is the eavesdropper's equivalent channel is the weakest, and the other is the eavesdropper's equivalent channel between the strong user and weak user. For the former case, we employ the constrained concave convex procedure (CCCP)‐based iterative algorithm with one‐dimensional search. While for the latter, we adopt the method of alternating optimization (AO) between precoder and power allocation. We solve a semidefinite programming to optimize the precoder and drive a closed‐form expression of power allocation. The simulation results obtained by our method demonstrate the superiority of our proposed scheme.  相似文献   
954.
Since the first demonstration of light‐emitting electrochemical cells (LECs) in 1995, much effort has been made to develop this technology for display and lighting. A common LEC generally contains a single emissive layer blended with a salt, which provides mobile ions under a bias. Ions accumulated at electrodes facilitate electrochemical doping such that operation voltage is low even when employing high‐work‐function inert electrodes. The superior properties of simple device architecture, low‐voltage operation, and compatibility with inert metal electrode render LECs suitable for cost‐effective light‐emitting sources. In addition to enormous progress in developing novel emissive materials for LECs, optical engineering has been shown to improve device performance of LECs in an alternative way. Light outcoupling enhancement technologies recycle the trapped light and increase the light output from LECs. Techniques to estimate emission zone position provide a powerful tool to study carrier balance of LECs and to optimize device performance. Spectral tailoring of the output emission from LECs based on microcavity effect and localized surface plasmon resonance of metal nanoparticles improves the intrinsic emission properties of emissive materials by optical means. These reported optical techniques are overviewed in this review.  相似文献   
955.
Layered transition metal (TM) oxides of the stoichiometry NaxMO2 (M = TM) have shown great promise in sodium‐ion batteries (SIBs); however, they are extremely sensitive to moisture. To date, most reported titanium‐based layered anodes exhibit a P2‐type structure. In contrast, O3‐type compounds are rarely investigated and their synthesis is challenging due to their higher percentage of unstable Ti3+ than the P2 type. Here, a pure phase and highly crystalline O3‐type Na0.73Li0.36Ti0.73O2 with high performance is successfully proposed in SIBs. This material delivers a reversible capacity of 108 mAh g?1 with a stable and safe potential of 0.75 V versus Na/Na+. In situ X‐ray diffraction reveals that this material does not undergo any phase transitions and exhibits a near‐zero volume change upon Na+ insertion/de‐insertion, which ensures exceptional long cycle life over 6000 cycles. Importantly, it is found that this O3‐Na0.73Li0.36Ti0.73O2 shows superior moisture stability, even when immersed into water, which are both elusive for conventional layered TM oxides in SIBs. It is believed that the small interlayer distance and high occupation of interlayer vacancy promise such unprecedented water stability.  相似文献   
956.
As a prerequisite for a sustainable energy economy in the future, designing earth‐abundant MoS2 catalysts with a comparable hydrogen evolution catalytic performance in both acidic and alkaline environments is still an urgent challenge. Decreasing the energy barriers could enhance the catalysts' activity but is not often a strategy for doing so. Here, the first kinetic‐oriented design of the MoS2‐based heterostructure is presented for pH‐universal hydrogen evolution catalysis by optimizing the electronic structure based on the simultaneous modulation of the 3d‐band‐offsets of Ni, Co, and Mo near the interface. Benefiting from this desirable electronic structure, the obtained MoS2/CoNi2S4 catalyst achieves an ultralow overpotential of 78 and 81 mV at 10 mA cm?2, and turnover frequency as high as 2.7 and 1.7 s?1 at the overpotential of 200 mV in alkaline and acidic media, respectively. The MoS2/CoNi2S4 catalyst represents one of the best hydrogen evolution reaction performing ones among MoS2‐based catalysts reported to date in both alkaline and acidic environments, and equally important is the remarkable long‐term stability with negligible activity loss after maintaining at 10 mA cm?2 for 48 h in both acid and base. This work highlights the potential to deeply understand and rationally design highly efficient pH‐universal electrocatalysts for future energy storage and delivery.  相似文献   
957.
The effective treatment of Alzheimer's disease (AD) is hindered due to the hard blood–brain barrier (BBB) penetration and non‐selective distribution of drugs in the brain. Moreover, the complicated pathological mechanism of AD involves various pathway dysfunctions that limit the effectiveness of a single therapeutic drug. Herein, a dendrigraft poly‐l ‐lysines (DGL)‐based siRNA and D peptide (Dp) loaded nanoparticle is designed that could target and penetrate through the BBB, enter the brain parenchyma, and further accumulate at the AD lesion. In this system, T7 peptide, which specifically targets transferrin receptors on the BBB, is linked to DGL via acid‐cleavable long polyethylene glycol (PEG) to achieve high internalization, quick escape from endo/lysosome, and effective transcytosis. Then, the Tet1, which specifically targets diseased neurons, is modified onto DGL by short PEG. After being exposed, Tet1 could drive the nanoparticles to the AD lesion and release the drugs. As a result, the production of β amyloid plaques (Aβ) is inhibited. Neurotoxicity induced by Aβ plaques and tau proten phosphorylation (p‐tau) tangle is also alleviated, and the cognition of AD mice is significantly improved. Overall, this system programmatically targets BBB and neurons, thus, significantly enhances the intracephalic drug accumulation and AD treatment efficacy.  相似文献   
958.
Real‐time tracking of the dynamics change of self‐assembled nanostructures in physiological environments is crucial to improving their delivery efficiency and therapeutic effects. However, such tracking is impeded by the complex biological microenvironment leading to inhomogeneous distribution. A rotatable fluorescent ratio strategy is introduced that integrates aggregation‐induced emission (AIE) and aggregation‐caused quenching (ACQ) into one nanostructured system, termed AIE and ACQ fluorescence ratio (AAR). Following this strategy, an advanced probe, PEG5k‐TPE4‐ICGD4 (PTI), is developed to track the dynamics change. The extremely sharp fluorescent changes (up to 4008‐fold) in AAR allowed for the clear distinguishing and localization of the intact state and diverse dissociated states. The spatiotemporal distribution and structural dynamics of the PTI micelles can be tracked, quantitatively analyzed in living cells and animal tissue by the real‐time ratio map, and be used to monitor other responsive nanoplatforms. With this method, the dynamics of nanoparticle in different organelles are able to be investigated and validated by transmission electron microscopy. This novel strategy is generally applicable to many self‐assembled nanostructures for understanding delivery mechanism in living systems, ultimately to enhance their performance in biomedical applications.  相似文献   
959.
The lithium metal anode is one of the most promising anodes for next‐generation high‐energy‐density batteries. However, the severe growth of Li dendrites and large volume expansion leads to rapid capacity decay and shortened lifetime, especially in high current density and high capacity. Herein, a soft 3D Au nanoparticles@graphene hybrid aerogel (Au? GA) as a lithiophilic host for lithium metal anode is proposed. The large surface area and interconnected conductive pathways of the Au? GA significantly decrease the local current density of the electrode, enabling uniform Li deposition. Furthermore, the 3D porous structure effectively accommodates the large volume expansion during Li plating/stripping, and the LixAu alloy serves as a solid solution buffer layer to completely eliminate the Li nucleation over‐potential. Symmetric cells can stably cycle at 8 mA cm?2 for 8 mAh cm?2 and exhibit ultra‐long cycling: 1800 h at 2 mA cm?2 for 2 mAh cm?2, and 1200 h at 4 mA cm?2 for 4 mAh cm?2, with low over‐potential. Full cells assemble with a Cu@Au? GA? Li anode and LiFePO4 cathode, can sustain a high rate of 8 C, and retain a high capacity of 59.6 mAh g?1 after 1100 cycles at 2 C.  相似文献   
960.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号