首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113821篇
  免费   8634篇
  国内免费   4281篇
电工技术   6089篇
技术理论   11篇
综合类   6806篇
化学工业   19213篇
金属工艺   5953篇
机械仪表   6897篇
建筑科学   8758篇
矿业工程   3157篇
能源动力   3190篇
轻工业   7034篇
水利工程   1794篇
石油天然气   6348篇
武器工业   704篇
无线电   14122篇
一般工业技术   14419篇
冶金工业   5910篇
原子能技术   1313篇
自动化技术   15018篇
  2024年   362篇
  2023年   1724篇
  2022年   2778篇
  2021年   4079篇
  2020年   3110篇
  2019年   2624篇
  2018年   3032篇
  2017年   3406篇
  2016年   2993篇
  2015年   4006篇
  2014年   5053篇
  2013年   6446篇
  2012年   6751篇
  2011年   7396篇
  2010年   6429篇
  2009年   6357篇
  2008年   6354篇
  2007年   5916篇
  2006年   6218篇
  2005年   5563篇
  2004年   3787篇
  2003年   3279篇
  2002年   2917篇
  2001年   2799篇
  2000年   2940篇
  1999年   3448篇
  1998年   2952篇
  1997年   2592篇
  1996年   2310篇
  1995年   1945篇
  1994年   1548篇
  1993年   1228篇
  1992年   964篇
  1991年   738篇
  1990年   597篇
  1989年   496篇
  1988年   382篇
  1987年   286篇
  1986年   199篇
  1985年   167篇
  1984年   93篇
  1983年   76篇
  1982年   87篇
  1981年   57篇
  1980年   44篇
  1979年   32篇
  1978年   25篇
  1977年   25篇
  1976年   40篇
  1973年   11篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Antibiotic and multi-drug resistant (MDR) Salmonella poses a significant threat to public health due to its ability to colonize animals (cold and warm-blooded) and contaminate freshwater supplies. Monitoring antibiotic resistant Salmonella is traditionally costly, involving the application of phenotypic and genotypic tests over several days. However, with the introduction of cheaper semi-automated devices in the last decade, strain detection and identification times have significantly fallen. This, in turn, has led to efficiently regulated food production systems and further reductions in food safety hazards. This review highlights current and emerging technologies used in the detection of antibiotic resistant and MDR Salmonella.  相似文献   
992.
Post-weaning diarrhea due to enterotoxigenic Escherichia coli (ETEC) is a common disease of piglets and causes great economic loss for the swine industry. Over the past few decades, decreasing effectiveness of conventional antibiotics has caused serious problems because of the growing emergence of multidrug-resistant (MDR) pathogens. Various studies have indicated that antimicrobial peptides (AMPs) have potential to serve as an alternative to antibiotics owing to rapid killing action and highly selective toxicity. Our previous studies have shown that AMP GW-Q4 and its derivatives possess effective antibacterial activities against the Gram-negative bacteria. Hence, in the current study, we evaluated the antibacterial efficacy of GW-Q4 and its derivatives against MDR ETEC and their minimal inhibition concentration (MIC) values were determined to be around 2~32 μg/mL. Among them, AMP Q4-15a-1 with the second lowest MIC (4 μg/mL) and the highest minimal hemolysis concentration (MHC, 256 μg/mL), thus showing the greatest selectivity (MHC/MIC = 64) was selected for further investigations. Moreover, Q4-15a-1 showed dose-dependent bactericidal activity against MDR ETEC in time–kill curve assays. According to the cellular localization and membrane integrity analyses using confocal microscopy, Q4-15a-1 can rapidly interact with the bacterial surface, disrupt the membrane and enter cytosol in less than 30 min. Minimum biofilm eradication concentration (MBEC) of Q4-15a-1 is 4× MIC (16 μg/mL), indicating that Q4-15a-1 is effective against MDR ETEC biofilm. Besides, we established an MDR ETEC infection model with intestinal porcine epithelial cell-1 (IPEC-1). In this infection model, 32 μg/mL Q4-15a-1 can completely inhibit ETEC adhesion onto IPEC-1. Overall, these results suggested that Q4-15a-1 may be a promising antibacterial candidate for treatment of weaned piglets infected by MDR ETEC.  相似文献   
993.
Auxin response factors (ARFs) play important roles in various plant physiological processes; however, knowledge of the exact role of ARFs in plant responses to water deficit is limited. In this study, SlARF4, a member of the ARF family, was functionally characterized under water deficit. Real-time fluorescence quantitative polymerase chain reaction (PCR) and β-glucuronidase (GUS) staining showed that water deficit and abscisic acid (ABA) treatment reduced the expression of SlARF4. SlARF4 was expressed in the vascular bundles and guard cells of tomato stomata. Loss of function of SlARF4 (arf4) by using Clustered Regularly Interspaced Short Palindromic Repeats/Cas 9 (CRISPR/Cas 9) technology enhanced plant resistance to water stress and rehydration ability. The arf4 mutant plants exhibited curly leaves and a thick stem. Malondialdehyde content was significantly lower in arf4 mutants than in wildtype plants under water stress; furthermore, arf4 mutants showed higher content of antioxidant substances, superoxide dismutase, actual photochemical efficiency of photosystem II (PSII), and catalase activities. Stomatal and vascular bundle morphology was changed in arf4 mutants. We identified 628 differentially expressed genes specifically expressed under water deficit in arf4 mutants; six of these genes, including ABA signaling pathway-related genes, were differentially expressed between the wildtype and arf4 mutants under water deficit and unlimited water supply. Auxin responsive element (AuxRE) elements were found in these genes’ promoters indicating that SlARF4 participates in ABA signaling pathways by regulating the expression of SlABI5/ABF and SCL3, thereby influencing stomatal morphology and vascular bundle development and ultimately improving plant resistance to water deficit.  相似文献   
994.
995.
TRPA1, a nonselective cation channel, is expressed in sensory afferent that innervates peripheral targets. Neuronal TRPA1 can promote tissue repair, remove harmful stimuli and induce protective responses via the release of neuropeptides after the activation of the channel by chemical, exogenous, or endogenous irritants in the injured tissue. However, chronic inflammation after repeated noxious stimuli may result in the development of several diseases. In addition to sensory neurons, TRPA1, activated by inflammatory agents from some non-neuronal cells in the injured area or disease, might promote or protect disease progression. Therefore, TRPA1 works as a molecular sentinel of tissue damage or as an inflammation gatekeeper. Most kidney damage cases are associated with inflammation. In this review, we summarised the role of TRPA1 in neurogenic or non-neurogenic inflammation and in kidney disease, especially the non-neuronal TRPA1. In in vivo animal studies, TRPA1 prevented sepsis-induced or Ang-II-induced and ischemia-reperfusion renal injury by maintaining mitochondrial haemostasis or via the downregulation of macrophage-mediated inflammation, respectively. Renal tubular epithelial TRPA1 acts as an oxidative stress sensor to mediate hypoxia–reoxygenation injury in vitro and ischaemia–reperfusion-induced kidney injury in vivo through MAPKs/NF-kB signalling. Acute kidney injury (AKI) patients with high renal tubular TRPA1 expression had low complete renal function recovery. In renal disease, TPRA1 plays different roles in different cell types accordingly. These findings depict the important role of TRPA1 and warrant further investigation.  相似文献   
996.
Microglia-mediated neuroinflammation is recognized to mainly contribute to the progression of neurodegenerative diseases. Epigallocatechin-3-gallate (EGCG), known as a natural antioxidant in green tea, can inhibit microglia-mediated inflammation and protect neurons but has disadvantages such as high instability and low bioavailability. We developed an EGCG liposomal formulation to improve its bioavailability and evaluated the neuroprotective activity in in vitro and in vivo neuroinflammation models. EGCG-loaded liposomes have been prepared from phosphatidylcholine (PC) or phosphatidylserine (PS) coated with or without vitamin E (VE) by hydration and membrane extrusion method. The anti-inflammatory effect has been evaluated against lipopolysaccharide (LPS)-induced BV-2 microglial cells activation and the inflammation in the substantia nigra of Sprague Dawley rats. In the cellular inflammation model, murine BV-2 microglial cells changed their morphology from normal spheroid to activated spindle shape after 24 h of induction of LPS. In the in vitro free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, EGCG scavenged 80% of DPPH within 3 min. EGCG-loaded liposomes could be phagocytized by BV-2 cells after 1 h of cell culture from cell uptake experiments. EGCG-loaded liposomes improved the production of BV-2 microglia-derived nitric oxide and TNF-α following LPS. In the in vivo Parkinsonian syndrome rat model, simultaneous intra-nigral injection of EGCG-loaded liposomes attenuated LPS-induced pro-inflammatory cytokines and restored motor impairment. We demonstrated that EGCG-loaded liposomes exert a neuroprotective effect by modulating microglia activation. EGCG extracted from green tea and loaded liposomes could be a valuable candidate for disease-modifying therapy for Parkinson’s disease (PD).  相似文献   
997.
A zirconium hybrid polyhedral oligomeric silsesquioxane derivative (Zr–POSS–bisDOPO) is synthesized by the corner-capping and Kabachnik–Fields reactions. It is characterized by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (NMR), and then used as a flame retardant in diglycidyl ether of bisphenol A (DGEBA) to endow epoxy resin (EP) with flame retardancy. The flame retardancy, thermal stability, and mechanical properties of the cured EP/Zr–POSS–bisDOPO composites are investigated. The results show that when Zr–POSS–bisDOPO is added by 5–7 wt%, the EP/Zr–POSS–bisDOPO composites pass the UL-94 V-0 rating test. In addition, they have a better flame-retardant effect than pure EP. The combination of Zr atom embedded in the Si O cubic cage and the two phosphaphenanthrene substituent groups in one corner of cubic cage is expected to realize the Zr/Si/P ternary intramolecular hybrid synergistic effect and achieve the possibility of dispersing metal–POSS cages at a sub-micrometer-scale level into polymer matrix. It also proves that Zr–POSS–bisDOPO produces phosphorus-containing free radicals and terminates the chain reactions in gas phase. Meanwhile the Si O Si and Zr O units are retained in the solid phase, which promote the char formation and enhance the flame retardancy. This kind of Zr-doped POSS will be helpful for developing the new metal–POSS hybrid flame-retardant and polymer composites.  相似文献   
998.
Self-healing hydrogels often possess poor mechanical properties which largely limits their applications in many fields. In this work, boron nitride nanosheets are introduced into a network of the poly(vinyl alcohol)/borax (PVA/borax) hydrogels to enhance the mechanical properties of the hydrogel without compromising the self-healing abilities. The obtained hydrogels exhibit excellent mechanical properties with a tensile strength of 0.410 ± 0.007 MPa, an elongation at break of 1712%, a Young's Modulus of 0.860 ± 0.023 MPa, and a toughness of 3.860 ± 0.075 MJ m−3. In addition, the self-healing efficiency of the hydrogels is higher than 90% within 10 min at room temperature. Benefiting from the excellent self-healing properties, the shapeability of the hydrogel fragments is observed using different molds. In addition, the hydrogels display rapid pH-driven shape memory effects and can recover to their original shape within 260 s. Overall, this work provides a new approach to hydrogels with integrated excellent mechanical properties, self-healing abilities, and rapid pH-driven shape memory effects.  相似文献   
999.
In order to meet the requirements of polymer dielectric materials for high thermal stability and excellent dielectric properties in the application of high-temperature film capacitors, a series of polyimide (PI) films are fabricated by introducing a self-synthesized aniline trimer (ACAT) with a conjugated structure in this work. Since the conjugated ACAT in the main chains of PI improves the electron polarization and carrier mobility of the PI molecular chains, the dielectric constant of the ACAT-PI films is greatly enhanced (4.4–7.4). Meanwhile, the dissipation factor does not increase apparently (0.002–0.013). The dielectric properties are stable even when the temperature is up to 200 °C, the thermal degradation temperature is as high as 450 °C, and the mechanical properties are also excellent (70–105 MPa). Among all the films, the PI film with 5 mol% ACAT exhibits the maximal energy density of 3.6 J cm−3 under the field of 426 kV mm−1, the high tensile strength (90 MPa) and the excellent thermal stability (Td5 = 515 °C). The work paves the way to prepare high-temperature polymer dielectric film materials with high energy storage density.  相似文献   
1000.
The development of sensitive materials for standard and improvised explosives is greatly significant to homeland security. In this paper, the phosphotungstate (NaPT) doped polyphenylene vinylene (PPV) nanotube arrays (NTAs), with excellent optical response, chemical stability, and larger specific surface area, are successfully fabricated by means of the “precursor film” infiltration method. The efficient charge carriers' separation of PPV NTAs can be achieved by doping NaPT to realize the photoelectric detection of explosive vapors. In addition, the identification of six explosives, including ammonium nitrate (AN), dinitrotoluence (DNT), picric acid (PA), p-nitrotoluene (PNT), triacetone triperoxide (TATP), and trinitrotoluene (TNT), can also be realized through the fingerprint atlas. Moreover, the adsorption energy and excited oscillator intensity has also been employed to explain the interaction between NaPT doped PPV nanotube arrays and various explosive molecules. Obviously, the NaPT doped PPV developed has the potential to be used as an explosive sensor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号