首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   7篇
化学工业   39篇
金属工艺   4篇
机械仪表   3篇
能源动力   3篇
轻工业   1篇
石油天然气   2篇
无线电   12篇
一般工业技术   31篇
冶金工业   3篇
原子能技术   4篇
自动化技术   9篇
  2023年   1篇
  2022年   8篇
  2021年   7篇
  2020年   4篇
  2019年   9篇
  2018年   5篇
  2017年   3篇
  2016年   1篇
  2015年   3篇
  2014年   4篇
  2013年   3篇
  2012年   8篇
  2011年   5篇
  2010年   8篇
  2009年   11篇
  2008年   5篇
  2007年   3篇
  2006年   4篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2001年   3篇
  2000年   5篇
  1999年   1篇
  1997年   1篇
  1993年   1篇
  1992年   1篇
  1966年   1篇
排序方式: 共有111条查询结果,搜索用时 15 毫秒
51.
We have studied the effect of the chromium concentration in an impregnating borochromating powder mixture on the change in the lattice parameters of the rhombic FeB phase of boride coatings on carbon steels, their microhardness, and the BK α energy spectra. An increase in the microhardness of the boride phases for chromium concentration 3.5-6 mass% in powder boron-impregnating mixtures is accompanied by a decrease in the FeB lattice parameters. Interpretation of the BK α spectra has allowed us to establish that this fact is due to an increase in the covalent component of the Fesd ― Bp bond.  相似文献   
52.
Solution processing of inorganic thin films has become an important thrust in material research community because it offers low‐cost and high‐throughput deposition of various functional coatings and devices. Especially inorganic thin film solar cells – macroelectronic devices that rely on consecutive deposition of layers on large‐area rigid and flexible substrates – could benefit from solution approaches in order to realize their low‐cost nature. This article critically reviews existing deposition approaches of functional layers for chalcogenide solar cells with an extension to other thin film technologies. Only true solutions of readily available metal salts in appropriate solvents are considered without the need of pre‐fabricated nanoparticles. By combining three promising approaches, an air‐stable Cu(In,Ga)Se2 thin film solar cell with efficiency of 13.8% is demonstrated where all constituent layers (except the metal back contact) are processed from solutions. Notably, water is employed as the solvent in all steps, highlighting the potential for safe manufacturing with high utilization rates.  相似文献   
53.
High-resolution X-ray photoelectron spectroscopy (XPS) is used to study regularities in the formation of valence band electronic structure in binary As x Se100 − x , As x S100 − x , Ge x Se100 − x and Ge x S100 − x chalcogenide vitreous semiconductors. It is shown that the highest occupied energetic states in the valence band of these materials are formed by lone pair electrons of chalcogen atoms, which play dominant role in the formation of valence band electronic structure of chalcogen-rich glasses. A well-expressed contribution from chalcogen bonding p electrons and more deep s orbitals are also recorded in the experimental valence band XPS spectra. Compositional dependences of the observed bands are qualitatively analyzed from structural and compositional points of view.  相似文献   
54.
In this paper, we discuss the amount of generated gaseous and liquid hydrocarbons as a product of artificial maturation of organic matters of Domanic black shale. The material balance of organic matter for initial rock sample and after thermal treatment at 300 and 500?°С were estimated. The amount of generated liquid hydrocarbon was minimum at 500?°С. As a result of kerogen destruction, no asphaltenes were observed during generation of liquid hydrocarbons. Based on the results of elemental analysis, Van Krevelen diagram was plotted.  相似文献   
55.
56.
57.
The development of intravitreal glucocorticoid delivery systems is a current global challenge for the treatment of inflammatory diseases of the posterior segment of the eye. The main advantages of these systems are that they can overcome anatomical and physiological ophthalmic barriers and increase local bioavailability while prolonging and controlling drug release over several months to improve the safety and effectiveness of glucocorticoid therapy. One approach to the development of optimal delivery systems for intravitreal injections is the conjugation of low-molecular-weight drugs with natural polymers to prevent their rapid elimination and provide targeted and controlled release. This study focuses on the development of a procedure for a two-step synthesis of dexamethasone (DEX) conjugates based on the natural polysaccharide chitosan (CS). We first used carbodiimide chemistry to conjugate DEX to CS via a succinyl linker, and we then modified the obtained systems with succinic anhydride to impart a negative ζ-potential to the polymer particle surface. The resulting polysaccharide carriers had a degree of substitution with DEX moieties of 2–4%, a DEX content of 50–85 μg/mg, and a degree of succinylation of 64–68%. The size of the obtained particles was 400–1100 nm, and the ζ-potential was −30 to −33 mV. In vitro release studies at pH 7.4 showed slow hydrolysis of the amide and ester bonds in the synthesized systems, with a total release of 8–10% for both DEX and succinyl dexamethasone (SucDEX) after 1 month. The developed conjugates showed a significant anti-inflammatory effect in TNFα-induced and LPS-induced inflammation models, suppressing CD54 expression in THP-1 cells by 2- and 4-fold, respectively. Thus, these novel succinyl chitosan-dexamethasone (SucCS-DEX) conjugates are promising ophthalmic carriers for intravitreal delivery.  相似文献   
58.
A cold floating probe method was compared with the emissive floating probe method in terms of a low-pressure radio-frequency inductive discharge. The dependences of difference between the plasma potential and the floating potential on the electron temperature 1–8 eV, plasma density 109 –1012 cm−3 and magnetic field 100–650 G were obtained. It was demonstrated that the difference between the potentials that obtained by these two methods can differ significantly from the expected value of 5.2 kTe/e for argon.  相似文献   
59.
Silica thin films and nanoparticles prepared using sol–gel chemistry are derivatized with active molecules to generate new functional materials. The mild conditions associated with sol–gel processing allow for the incorporation of a range of dopants including organic or inorganic dyes, biomolecules, surfactants, and molecular machines. Silica nanoparticles embedded with inorganic nanocrystals, and films containing living cells have also been synthesized. Silica templated with surfactants to create mesostructure contains physically and chemically different regions that can be selectively derivatized using defined techniques to create dynamic materials. Using two different techniques, donor–acceptor pairs can be doped into separated regions simultaneously and photo-induced electron transfer between the molecules can be measured. Mesoporous silica materials are also useful supports for molecular machines. Machines including snap-tops and nanoimpellers that are designed to control the release of guest molecules trapped within the pores are described. Mesoporous silica nanoparticles are promising materials for drug delivery and other biomedical applications because they are nontoxic and can be taken up by living cells. Through appropriate design and synthesis, multifunctional mesoporous silica nanoparticles for sophisticated bio-applications are created.  相似文献   
60.
Plant lignans exhibit a wide range of biological activities, which makes them the research objects of potential use as therapeutic agents. They provide diverse naturally-occurring pharmacophores and are available for production by chemical synthesis. A large amount of accumulated data indicates that lignans of different structural groups are apt to demonstrate both anti-inflammatory and antioxidant effects, in many cases, simultaneously. In this review, we summarize the comprehensive knowledge about lignan use as a bioactive agent in disorders associated with oxidative stress and inflammation, pharmacological effects in vitro and in vivo, molecular mechanisms underlying these effects, and chemical synthesis approaches. This article provides an up-to-date overview of the current data in this area, available in PubMed, Scopus, and Web of Science databases, screened from 2000 to 2022.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号