首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   155篇
  免费   14篇
  国内免费   1篇
电工技术   2篇
化学工业   55篇
金属工艺   5篇
机械仪表   5篇
建筑科学   2篇
能源动力   5篇
轻工业   27篇
水利工程   1篇
无线电   11篇
一般工业技术   32篇
冶金工业   3篇
自动化技术   22篇
  2024年   1篇
  2023年   1篇
  2022年   6篇
  2021年   7篇
  2020年   5篇
  2019年   4篇
  2018年   12篇
  2017年   6篇
  2016年   12篇
  2015年   4篇
  2014年   7篇
  2013年   11篇
  2012年   11篇
  2011年   16篇
  2010年   12篇
  2009年   18篇
  2008年   11篇
  2007年   8篇
  2006年   4篇
  2005年   2篇
  2004年   5篇
  2003年   1篇
  2002年   1篇
  2001年   3篇
  1998年   1篇
  1996年   1篇
排序方式: 共有170条查询结果,搜索用时 46 毫秒
161.
Electrochemical copolymerization of aniline and thiophene was investigated on -PbO2 electrode in acetonitrile. Optimum experimental conditions were determined forcopolymerization. Copolymer films synthesized on -PbO2 electrode were analyzed bycyclic voltammetry, dry conductivity measurements, FT-IR spectroscopy, elemental analysisand thermal methods.  相似文献   
162.
In this study, nanocomposite-implant materials with the filler materials, which are nanohydroxyapatite (nHAp) and nHAp modified by [3-(2-aminoethilamino)propyl]trimethoxysilane, using poly(methylmethacrylate) as a matrix according to the melting method, were synthesized. The nanocomposites were characterized using X-ray diffraction, Fourier transform infrared spectroscopy–attenuated total reflectance, scanning electron microscopy, transmission electron microscopy, differential thermal analysis/thermogravimetric analysis, and differential scanning calorimetry devices. Experimental results showed that the thermal stability of nanocomposites increased, and they were hemocompatible, had no negative effect on antioxidant enzymes, and had antibacterial activity.  相似文献   
163.
Surface modification of clay minerals has become increasingly important for improving the practical applications of clays such as fillers and adsorbents. An investigation was carried out on the surface modification of sepiolite with aminopropylsilyl groups in 3-aminopropyltriethoxysilane (3-APT). The zeta potential of the modified sepiolite suspensions was measured as a function of initial electrolyte concentration and equilibrium pH using a Zeta Meter 3.0 for modified sepiolite. The utility of the 3-APT-modified sepiolite was investigated as an adsorbent for removal of various heavy metal ions such as Fe, Mn, Co, Zn, Cu, Cd and Ni from aqueous solutions. The effects of various factors on the adsorption, such as pH, ionic strength and temperature of the solution were studied. The results showed that the amount adsorbed increases with solution pH in the pH range of 1.5 and 7.0; indicated that the modified sepiolite adsorbed Fe and Mn ions more than other metal ions such as Co, Zn, Cu, Cd and Ni. It was found that the temperature had an important effect on metal ion adsorption by the modified sepiolite. The adsorption isotherm has been determined and data have been analyzed according to the Langmuir and Freundlich models.  相似文献   
164.
Environmentally sensitive hydrogels responsive to various stimuli such as temperature, pH, ionic strength of the medium and the solvent were prepared by using N‐isopropyl acrylamide (NIPAM), acrylamide (AAm) and monomers that have various number of carboxylic acid (XA) functionality using N,N′‐methylene bisacrylamide (Bis) as crosslinker. Hydrogels were prepared via free radical polymerization reaction in aqueous solution. P(NIPAAm‐co‐AAm) and p(NIPAAm‐co‐AAm)/XA hydrogels that contain monoprotic crotonic acid (CA) exhibit a lover critical solution temperature (LCST) at 28°C, whereas p(NIPAAm‐co‐AAm)/IA (IA:itaconic acid), and P(NIPAAm‐co‐AAm)/ACA (ACA:acotonic acid) hydrogels exhibit a lover critical solution temperature at 30.7°C and 34.4°C, respectively. Spectroscopic and thermal analyses were performed for the structural and thermal characterizations of the prepared hydrogel. The swelling experiments as equilibrium swelling percentages by gravimetrically were carried out in different solvents, at different solutions temperature, pH, and ionic strengths to determine their effects on swelling characteristic of hydrogels. POLYM. ENG. SCI., 55:843–851, 2015. © 2014 Society of Plastics Engineers  相似文献   
165.
166.
Fabric bagging is a three-dimensional permanent deformation which can deteriorate aesthetical appearance and mechanical properties of garments. This review presents a brief look at the concept of bagging deformation consisting basic definitions, theories and modelling, objective and subjective evaluation and the parameters affecting fabric bagging. The effects of both fabric structural properties and bagging test parameters have been also explored. A thorough knowledge of bagging measurement by different laboratory tests such as unidirectional tensile, bursting strength, ball penetration tests and devices resembling an arm having an elbow point for simulating human movements in static or dynamic conditions was reviewed in details.  相似文献   
167.
Cyanide, a hazardous substance, is released into the environment as a result of natural processes of various industrial activities which is a toxic pollutant according to Environmental Protection Agency. In nature, some microorganisms are responsible for the degradation of cyanide, but there is only limited information about the degradation characteristics of Basidiomycetes for cyanide. The aim of the present study is to determine cyanide degradation characteristics in some Basidiomycetes strains including Polyporus arcularius (T 438), Schizophyllum commune (T 701), Clavariadelphus truncatus (T 192), Pleurotus eryngii (M 102), Ganoderma applanatum (M 105), Trametes versicolor (D 22), Cerrena unicolor (D 30), Schizophyllum commune (D 35) and Ganoderma lucidum (D 33). The cyanide degradation activities of P. arcularius S. commune and G. lucidum were found to be more than that of the other fungi examined. The parameters including incubation time, amount of biomass, initial cyanide concentration, temperature, pH and agitation rate were optimized for the selected three potential fungal strains. The maximum cyanide degradation was obtained after 48 h of incubation at 30 °C by P. arcularius (T 438). The optimum pH and agitation rate were measured as 10.5 and 150 rev/min, respectively. The amount of biomass was found as 3.0 g for the maximum cyanide biodegradation with an initial cyanide concentration of 100 mg/L. In this study, agar was chosen entrapment agent for the immobilization of effective biomass. We suggested that P. arcularius (T 438) could be effective in the treatment of contaminated sites with cyanide due to capability of degrading cyanide.  相似文献   
168.
The hydrogen storage (1–10H2) properties of single- and double-side lithium decorated ThMoB4-type graphene (Li/ThMoB4C) are systematically investigated by density functional first-principles calculations within Dmol3 package. After well-converged geometry optimizations, it is found that the binding energy of Li adatom is higher enough, and there is no adatom clustering. The average adsorption energies of 1–6 H2 deviate in 0.20–0.27 eV/H2 range, which is providing a convenient physical adsorption-desorption cycle. A detailed examination of the binding mechanism between the constituents of the H2 adsorbed Li-decorated systems is presented by density of states, Mulliken charge analysis, electron density and density difference calculations. For further decoration and adsorption with 12Li adatom and 72H2 molecules, the computation yields a high gravimetric density of 14.5 wt % with the acceptable adsorption energy. In this way, it is concluded that Li/ThMoB4 system can be considered as a promising hydrogen storage medium.  相似文献   
169.
170.
Conductive polymeric microneedle (MN) arrays as biointerface materials show promise for the minimally invasive monitoring of analytes in biodevices and wearables. There is increasing interest in microneedles as electrodes for biosensing, but efforts have been limited to metallic substrates, which lack biological stability and are associated with high manufacturing costs and laborious fabrication methods, which create translational barriers. In this work, additive manufacturing, which provides the user with design flexibility and upscale manufacturing, is employed to fabricate acrylic-based microneedle devices. These microneedle devices are used as platforms to produce intrinsically-conductive, polymer-based surfaces based on polypyrrole (PPy) and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS). These entirely polymer-based solid microneedle arrays act as dry conductive electrodes while omitting the requirement of a metallic seed layer. Two distinct coating methods of 3D-printed solid microneedles, in situ polymerization and drop casting, enable conductive functionality. The microneedle arrays penetrate ex vivo porcine skin grafts without compromising conductivity or microneedle morphology and demonstrate coating durability over multiple penetration cycles. The non-cytotoxic nature of the conductive microneedles is evaluated using human fibroblast cells. The proposed fabrication strategy offers a compelling approach to manufacturing polymer-based conductive microneedle surfaces that can be further exploited as platforms for biosensing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号