首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2419篇
  免费   65篇
  国内免费   13篇
电工技术   125篇
综合类   4篇
化学工业   634篇
金属工艺   67篇
机械仪表   65篇
建筑科学   61篇
能源动力   77篇
轻工业   167篇
水利工程   6篇
石油天然气   4篇
无线电   221篇
一般工业技术   468篇
冶金工业   344篇
原子能技术   62篇
自动化技术   192篇
  2023年   11篇
  2022年   28篇
  2021年   40篇
  2020年   19篇
  2019年   12篇
  2018年   40篇
  2017年   25篇
  2016年   43篇
  2015年   47篇
  2014年   60篇
  2013年   117篇
  2012年   99篇
  2011年   139篇
  2010年   88篇
  2009年   117篇
  2008年   132篇
  2007年   113篇
  2006年   80篇
  2005年   100篇
  2004年   86篇
  2003年   81篇
  2002年   64篇
  2001年   69篇
  2000年   54篇
  1999年   53篇
  1998年   117篇
  1997年   83篇
  1996年   56篇
  1995年   43篇
  1994年   53篇
  1993年   50篇
  1992年   32篇
  1991年   30篇
  1990年   23篇
  1989年   38篇
  1988年   28篇
  1987年   22篇
  1986年   14篇
  1985年   26篇
  1984年   21篇
  1983年   13篇
  1982年   18篇
  1981年   22篇
  1980年   20篇
  1979年   17篇
  1978年   12篇
  1977年   16篇
  1976年   11篇
  1974年   7篇
  1973年   3篇
排序方式: 共有2497条查询结果,搜索用时 15 毫秒
71.
The electroreductive polymerization of dichloromethylphenylsilane in the presence of triphenylsilyl group‐containing disilanes such as hexaphenyldisilane followed by the electroreductive termination with chlorotriphenylsilane afforded triphenylsilyl group‐terminated polymethylphenylsilane in 15–32% yield. The isolated polymethylphenylsilane (Mn = 3350 g mol?1, Mw/Mn = 1.4) was found to react as a macroinitiator to copolymerize with dibutyldichlorosilane under electroreductive conditions producing the corresponding block copolymer (Mn = 4730 g mol?1, Mw/Mn = 1.2) in 38% yield. The ratio of monomer units (? MeSiPh? to? BuSiBu? ) of the copolymer was determined to be 75:25 using 1H NMR analysis, which was in good agreement with the calculated ratio (74:26) on the assumption that molecular weight of the macroinitiator was not changed. The block structure of the resulting copolymer, poly(methylphenylsilane)‐block‐poly(dibutylsilane), was also confirmed by comparing its 1H NMR and UV absorption spectra with those of polymethylphenylsilane, polydibutylsilane and a statistical copolymer prepared by electroreductive polymerization of dichloromethylphenylsilane with dibutyldichlorosilane. This method is applicable to the preparation of other types of macroinitiator such as triphenylsilyl group‐terminated polydibutylsilane, and polydibutylsilane‐block‐polymethylphenylsilane was also obtained using this macroinitiator. Copyright © 2011 Society of Chemical Industry  相似文献   
72.
Tetsuo Asakura  Isao Ando 《Polymer》1980,21(12):1372-1378
1H and 13C n.m.r. chemical shifts and also spin-lattice relaxation times of phospholipids, mainly egg yolk lecithin, were measured in organic solvents, especially aromatic solvents. The use of aromatic solvents promotes the difference in the magnetic shielding environment of the internal methylene protons of the fatty acyl chains and as a result, a doublet peak for the methylene groups was observed in the solvents, especially mesitylene. The 1H and 13C n.m.r. T1 measurements indicate the remarkable gradient in the motional freedom along the fatty acyl chains as well as the marked decrease in the motional freedom of the polar head group and also, the high-field component of the doublet peak for internal methylene protons has a shorter T1 value than the low-field component. Thus, it was concluded that the low-field component in the doublet comes from the methylene protons located relatively in the neighbourhood of the carbonyl groups and the high-field component the methylene protons located relatively in the neighbourhood of the terminal methyl groups of the fatty acyl chains.  相似文献   
73.
Efficient gas recovery and separation in a hydrate-based system was investigated for a model gaseous mixture of R22 and nitrogen. The formed hydrate settled in the recovery vessel; excess water was recycled and the hydrate was subsequently decomposed by releasing pressure from the vessel. The gas uptake rate of R22 gas from the vapor phase and the gas recovery rate from the hydrate were determined from hydrate formation and decomposition, respectively. The gas recovery rate of R22 gas gradually increased with time. On the contrary, the nitrogen gas recovery rate was a maximum in the initial stage of hydrate decomposition. A high separation factor (S.F.) was achieved by first separating the N2-rich gas generated during initial hydrate decomposition. An efficient hydrate-based gas separation and recovery process is proposed.  相似文献   
74.
The enzyme butyrylcholinesterase (BChE) represents a promising target for imaging probes to potentially enable early diagnosis of neurodegenerative diseases like Alzheimer's disease (AD) and to monitor disease progression in some forms of cancer. In this study, we present the design, facile synthesis, in vitro and preliminary ex vivo and in vivo evaluation of a morpholine-based, selective inhibitor of human BChE as a positron emission tomography (PET) tracer with a pseudo-irreversible binding mode. We demonstrate a novel protecting group strategy for 18F radiolabeling of carbamate precursors and show that the inhibitory potency as well as kinetic properties of our unlabeled reference compound were retained in comparison to the parent compound. In particular, the prolonged duration of enzyme inhibition of such a morpholinocarbamate motivated us to design a PET tracer, possibly enabling a precise mapping of BChE distribution.  相似文献   
75.
76.
La2O3–Nb2O5–Al2O3 high‐refractive‐index glasses were fabricated by containerless processing, and the glass‐forming region was determined. The thermal stability, density, optical transmittance, and the refractive index dispersion of these glasses were investigated. All the glasses were colorless and transparent in the visible to near infrared (NIR) region and had high refractive index with low wavelength dispersion. Some of these glasses were found to have significantly high glass‐forming ability. These results indicate that the ternary glasses are suitable for optical applications in the visible to NIR region. The effects of the substitution of Al2O3 for Nb2O5 on optical properties were discussed on the basis of the Drude–Voigt equation. It was suggested that the substitution of Al2O3 for Nb2O5 increased the molecular density and suppressed a decrease in the refractive index, even when both the average oscillator strength and inherent absorption wavelength decreased in La2O3–Nb2O5–Al2O3 glasses. These results are helpful for designing new optical glasses controlled to have a higher refractive index and lower wavelength dispersion.  相似文献   
77.
Structural analysis of the polyacenic semiconductor (PAS) material prepared by the pyrolysis of phenol-formaldehyde resin at relatively low temperature (680 °C) has been performed by applying 129Xe nuclear magnetic resonance (NMR) measurements. One can obtain information on the microporous structure of the PAS material through adsorption of Xe atoms, since a 129Xe nucleus is a very sensitive probe of its microscopic environment. All the introduced Xe atoms were adsorbed on the internal surface of the pure PAS sample, which indicated remarkably large surface area of the PAS material. The average pore size of the pure PAS sample has been determined to be 7.7 ± 1.6 Å from the pressure dependence of the Xe NMR chemical shift. In connection with the application of the PAS material to the electrode of the Li rechargeable battery, changes in the Xe NMR spectrum brought about by extrinsic additives such as binder, electrolyte solvent, and the doped Li have been investigated. In particular, it has been found that the Li-doping entirely prevents Xe atoms from entering into the micropores of the PAS material, probably due to adsorption of the solvent molecules on the internal surface of the micropores.  相似文献   
78.
We designed and synthesized quaternary copolymers of methyl methacrylate (MMA), 2,2,2-trifluoroethyl methacrylate (TFEMA), benzyl methacrylate (BzMA), and 3,3,5-trimethylcyclohexyl methacrylate (TMCHMA) and we investigated their birefringence, thermal properties, and other optical properties. When the copolymer composition was MMA/TFEMA/BzMA/TMCHMA = 50:38:8:4, 40:30:7:23, or 30:21:7:42 (wt%), a zero–zero-birefringence polymer that exhibited neither orientational nor photoelastic birefringence was obtained. We demonstrated that such zero–zero-birefringence polymers with a variety of compositions could be successfully prepared in the quaternary system by using the same compensation method as applied in ternary random copolymerization. We also demonstrated that the glass-transition temperature (Tg) and refractive index (nD) of these copolymers could be controlled with high accuracy while retaining their zero–zero-birefringence property. We can therefore predict the type of birefringence, the Tg, and the nD of a particular copolymer before polymerization. Zero–zero-birefringence polymers with the most appropriate characteristics can then be synthesized selectively by quaternary copolymerization.  相似文献   
79.
ABSTRACT: Forming electrodes on opposite sides of an individual bismuth nanowire was attempted to prepare for Hall measurements. Although a 1-mm-long bismuth nanowire which is completely covered with a quartz template has been successfully fabricated to prevent oxidation, it is very difficult to attach Hall electrodes on the opposite sides of the nanowire due to the quartz covering. One side of the cylindrical quartz template was removed by polishing without exposure of the nanowire to the atmosphere; the thickness between the polished template surface and the nanowire was estimated to be several micrometers. Focused ion beam processing was successfully employed to expose both surfaces of the nanowire under high vacuum by removing part of the quartz template. A carbon thin film was then deposited in situ on the wire surface to fabricate an electrical contact on the bismuth nanowire sample. Furthermore, the energy dispersive X-ray analysis was performed to the area processed by focused ion beam, and the bismuth component of the nanowire was successfully detected. It was confirmed that the focused ion beam processing was applicable to attach electrodes to bismuth nanowire for Hall measurement.  相似文献   
80.
Sn2Nb2−xTaxO7 (x = 0.0–2.0) with pyrochlore structure is a promising material for p-type oxide semiconductors. A systematic study of its Nb/Ta ratio indicated that the hole–generation efficiency of the Nb end (Sn2Nb2O7) was an order of magnitude lower than that of the Ta end (Sn2Ta2O7). Although this occurs due to differences in oxygen-vacancy formation, the origins of the hole–generation efficiencies remain unclear due to limited information on local and global crystal-structure disorders in pyrochlore Sn2Nb2O7 and Sn2Ta2O7. In this study, the crystal structures of Sn2B2O7 (B = Nb, Ta), composed of BO6 octahedra and Sn4O tetrahedra, were investigated using X-ray absorption spectroscopy and X-ray diffraction. A detailed investigation of the local and global crystal structures indicated a larger amount of disorder in the Sn4O tetrahedra in Sn2Nb2O7 compared to Sn2Ta2O7; disorder in the BO6 octahedra occurred only in Sn2Ta2O7. This study indicates that an appropriate selection of the B-site element is vital for suppressing defect and disorder formation in Sn4O tetrahedra and subsequently improving the hole–carrier–generation efficiency.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号