首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   632篇
  免费   11篇
电工技术   15篇
综合类   1篇
化学工业   120篇
金属工艺   10篇
机械仪表   23篇
建筑科学   8篇
能源动力   6篇
轻工业   52篇
水利工程   1篇
无线电   59篇
一般工业技术   127篇
冶金工业   141篇
原子能技术   46篇
自动化技术   34篇
  2022年   6篇
  2021年   10篇
  2020年   5篇
  2019年   3篇
  2018年   8篇
  2017年   7篇
  2016年   9篇
  2015年   7篇
  2014年   6篇
  2013年   23篇
  2012年   22篇
  2011年   42篇
  2010年   14篇
  2009年   22篇
  2008年   25篇
  2007年   29篇
  2006年   24篇
  2005年   27篇
  2004年   25篇
  2003年   15篇
  2002年   12篇
  2001年   16篇
  2000年   14篇
  1999年   18篇
  1998年   53篇
  1997年   36篇
  1996年   22篇
  1995年   18篇
  1994年   16篇
  1993年   10篇
  1992年   3篇
  1991年   6篇
  1990年   3篇
  1989年   7篇
  1988年   7篇
  1987年   9篇
  1986年   5篇
  1985年   4篇
  1984年   5篇
  1983年   7篇
  1982年   4篇
  1981年   7篇
  1980年   7篇
  1979年   7篇
  1976年   9篇
  1972年   1篇
  1970年   2篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有643条查询结果,搜索用时 0 毫秒
641.
Summary: A new class of melt blend material was prepared by extruding a mixture of 3‐aminopropyltriethoxysilane (APTES), maleic anhydride‐grafted poly(propylene) (PP‐g‐MA) with different molecular weight and MA content and poly(propylene) powder produced with a TiCl3‐based catalyst (PP‐A). A suitable selection of PP‐g‐MA provided extremely high melt strength (MS) of resultant blend materials. Such a superior melt property was caused by the synergy between the present melt reaction and the higher molecular weight portion containing PP‐A. The gel content measurements of typical blend materials and PP‐g‐MA/APTES blends indicated that an excessive amount of inert PP suppresses the formation of gels. The reaction between PP‐g‐MA and APTES was then investigated by analyzing crystalline polymer fractions separated from the atactic PP/PP‐g‐MA/APTES and atactic PP/PP‐g‐MA blends. The FT‐IR analysis of the fractions revealed that the NH2 group in APTES readily reacts with MA grafted on PP and the reaction leads to the formation of imide linkage. Moreover, the GPC analysis of the fraction showed that higher molecular weight polymers were formed in the presence of APTES. Since a trace amount of water surely produces in the vicinity of active silyltriethoxy groups during the reactive extrusion, such polymers were formed by the condensation between hydrolyzed APTES‐grafted polymer chains. These results led us to the conclusion that long‐chain‐branched PP (LCB‐PP) was certainly produced and its formation is essential for the increase in MS of the present blend materials.

Relationship between log(MS) and log(MFR) for PP/PP‐g‐MA/APTES and commercial PP resins.  相似文献   

642.
Li-filling in tetrahedral InSb and related compounds was attempted to investigate its effect on their thermal conductivities. Li-filled Li0.2In0.8Zn0.2Sb, Li0.4In0.6Zn0.4Sb, LiZnSb, and Li0.16Ga0.84Zn0.16Sb sintered samples were prepared by powder metallurgy. The filled samples had much lower room temperature lattice thermal conductivities than those of the corresponding unfilled materials; the values of the Li0.4In0.6Zn0.4Sb, LiZnSb, and Li0.16Ga0.84Zn0.16Sb were 23, 45, and 72 mW cm−1K−1, respectively. Filled tetrahedral compounds such as LixIn1−xZnxSb might be good thermoelectric materials.  相似文献   
643.
Epoxy-amine thermosetting resins undergo different reactions depending on the amine/epoxy stoichiometric ratio (r). Although many desirable properties can be achieved by varying the stoichiometric ratio, the effects of the variation on the crosslinked structure and mechanical properties and the contribution of these factors to the ductility of materials have not been fully elucidated. This study investigates the brittle-ductile behavior of epoxies with various stoichiometric ratios and performs curing simulations using molecular dynamics (MD) to evaluate the crosslinked structures. The molecular structure is predominantly branched in low-stoichiometric ratio samples, whereas the chain extension type structure dominates the high-stoichiometric ratio samples. As a result, the higher-stoichiometric ratio samples enhances the ductility of materials and the elongation at break increases form 1.4% (r = 0.6) to 11.4% (r = 1.4). Additionally, the tensile strength (105.4 MPa) and strain energy (7.96 J/cm3) are maximum at r = 0.8 and 1.2, respectively. On the other hand, the Young's modulus is negatively impacted and it decreased from 4.2 to 2.7 GPa with increasing stoichiometric ratio.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号