首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2862篇
  免费   235篇
  国内免费   6篇
电工技术   51篇
综合类   2篇
化学工业   612篇
金属工艺   59篇
机械仪表   189篇
建筑科学   100篇
能源动力   130篇
轻工业   138篇
水利工程   5篇
石油天然气   3篇
无线电   553篇
一般工业技术   598篇
冶金工业   260篇
原子能技术   25篇
自动化技术   378篇
  2024年   3篇
  2023年   29篇
  2022年   50篇
  2021年   84篇
  2020年   57篇
  2019年   84篇
  2018年   83篇
  2017年   95篇
  2016年   135篇
  2015年   98篇
  2014年   125篇
  2013年   185篇
  2012年   185篇
  2011年   231篇
  2010年   171篇
  2009年   131篇
  2008年   139篇
  2007年   146篇
  2006年   103篇
  2005年   94篇
  2004年   85篇
  2003年   94篇
  2002年   82篇
  2001年   62篇
  2000年   72篇
  1999年   45篇
  1998年   99篇
  1997年   53篇
  1996年   46篇
  1995年   38篇
  1994年   21篇
  1993年   26篇
  1992年   16篇
  1991年   17篇
  1990年   9篇
  1989年   11篇
  1988年   14篇
  1987年   12篇
  1986年   8篇
  1985年   9篇
  1984年   4篇
  1983年   11篇
  1982年   4篇
  1981年   6篇
  1980年   4篇
  1978年   5篇
  1977年   6篇
  1976年   9篇
  1974年   3篇
  1973年   3篇
排序方式: 共有3103条查询结果,搜索用时 15 毫秒
101.
The influence of initial pH of the culture medium on hydrogen production was studied using sucrose solution and a mixed microbial flora from a soybean‐meal silo. Hydrogen production was not observed at pH values of 3.0, 11.0 and 12.0 but low production was observed at pH values 5.0 and 5.5. The pH of the experimental mixture decreased rapidly and produced hydrogen gas within 30 h. Methane was not detected at initial pH values between 6.0 and 10.0. The sucrose degradation efficiency increased as the initial pH value increased from 3.0 to 9.0. The maximum sucrose degradation efficiency of 95% was observed at pH 9.0. The maximum specific production yields of hydrogen, VFAs and alcohols were 126.9 cm3 g?1 sucrose (pH of 9.0), 0.7 gCOD g?1 sucrose (pH of 8.0) and 128.7 mgCOD g?1 sucrose (pH of 9.0), respectively. The relationship between the hydrogen ion concentration and the specific hydrogen production rate has been mathematically described. The best kinetic parameters on the specific hydrogen production rate were KOH = 1.0 × 10?7 mol dm?3 and KH = 1.1 × 10?4 mol dm?3 (r2 = 0.86). The maximum specific hydrogen production rate was 37.0 cm3 g?1 VSS h?1. © 2002 Society of Chemical Industry  相似文献   
102.
Long-chain PUFA play an important role in early human neurodevelopment. Significant inverse correlations were reported between values of trans isomeric and long-chain PUFA in plasma lipids of preterm infants and children aged 1–15 yr as well as in venous cord blood lipids of full-term infants. Here we report FA compositional data of cord blood vessel wall lipids in 308 healthy, full-term infants (gestational age: 39.7±1.2 wk, birth weight: 3528±429 g, mean±SD). The median (interquartile range) of the sum of 18-carbon trans FA was 0.22 (0.13)% w/w in umbilical artery and 0.16 (0.10)% w/w in umbilical vein lipids. Nonparametric correlation analysis showed significant inverse correlations between the sum of 18-carbon trans FA and both arachidonic acid and DHA in artery (r=−0.38, P<0.01, and r=−0.20, P<0.01) and vein (r=−0.36, P<0.01, and −0.17, P<0.01) wall lipids. In addition, the sum of 18-carbon trans FA was significantly positively correlated to Mead acid, a general indicator of EFA deficiency, in both artery (r=+0.35, P<0.01) and vein (r=+0.31, P<0.01) wall lipids. The present results obtained in a large group of full-term infants suggest that maternal trans FA intake is inversely associated with long-chain PUFA status of the infant at birth.  相似文献   
103.
To improve the electrical conductivity of polyacrylonitrile (PAN) film, metallic sulfides and PAN composite film were prepared by the chelating method. Dense PAN film and porous PAN film were prepared by dry process and wet process, respectively. These PAN films were treated to NH2OH solution to introduce the amidoxime group coordinated with metallic ion. Cu+2 and Cd+2 ions were adsorbed to amidoximated PAN films, the sulfur ion was treated with metal-adsorbed PAN films, and thus CuS—and CdS–PAN composite films were prepared. The adsorptive capacity of amidoximated PAN film for the Cu+2 ion was independent of the morphology of the PAN film, but the adsorptive capacity of the Cd+2 ion on amidoximated PAN film was dependent on porosity of the polymer. Adsorptive capacity of amidoximated porous PAN film for Cd+2 was improved about four times than that of amidoximated dense PAN film. The electrical conductivities of CuS–dense and porous PAN composite film were both 10?1 S/cm in optimum condition, but because of the difference in adsorptive capacity, the electrical conductivities of CdS–dense and CdS–porous PAN composite films were 10?9 S/cm and 10?4 S/cm, respectively. Additionally, because CdS was known as a photoconductive material, the photoconductive properties of CdS–porous PAN composite film were investigated.  相似文献   
104.
The incorporation of β-amino acids into a peptide sequence has gained particular attention as β- and α/β-peptides have shown remarkable proteolytic stability, even after a single homologation at the scissile bond. Several peptidases have been shown to cleave such bonds with high specificity but at a much slower rate compared to α-peptide bonds. In this study, a series of analogs of dipeptidyl peptidase-4 (DPP-4) substrate inhibitors were synthesized in order to investigate whether β-amino acid homologation at the scissile bond could be a valid approach to improving peptide stability towards DPP-4 degradation. DPP-4 cleaved the α/β-peptide bond after the N-terminal penultimate Pro with a broad specificity and retained full activity regardless of the β3-amino acid side chain and peptide length. Significantly improved half-lives were observed for β3Ile-containing peptides. Replacing the penultimate Pro with a conformationally constrained Pro mimetic led to proteolytic resistance. DPP-4 cleavage of α/β-peptide bonds with a broad promiscuity represents a new insight into the stability of peptide analogs containing β-amino acids as such analogs were thought to be stable towards enzymatic degradation.  相似文献   
105.
Due to the complexity of the screen-printing operation and the rheological behaviors of the screen-printable paste, such a paste is usually formulated by trial-and-error. In this report, a systematic procedure, based on heuristics and mechanistic models, for the design of a screen-printable paste is developed. The procedure is demonstrated by a case study of the formulation of a conductive paste of copper particles.  相似文献   
106.
Palladium catalysts, Pd/MCM-41 and Pd/SBA-15 were prepared by impregnation of an aqueous solution of [Pd(NH3)4]Cl2 on MCM-41 and SBA-15. Palladium contents of Pd/MCM-41 and Pd/SBA-15 are 8.4% and 8.7%, respectively. It has been shown that these catalysts are very suitable to microwave-assisted Suzuki reactions under solvent-free condition. It is also found that the base additives for this reaction are K2CO3, Cs2CO3 or CsF. Thus, phenylboronic acid and phenyl iodide with Pd/MCM-41 produce biphenyl by microwave irradiation for 10 min in 97.4% yield. Phenyl bromide, instead of phenyl iodide, also proceeds the reaction with phenylboronic acid using Pd/MCM-41 or Pd/SBA-15 yielding biphenyl by microwave irradiation for 10 min in excellent yield. Whereas the reaction of phenyl chloride with phenylboronic acid gives poor yield in same condition. Various aryl iodides and aryl bromides are tested. In this paper our recent results of microwave-assisted Suzuki reaction using Pd/MCM-41 and Pd/SBA-15 under solvent-free condition are described.  相似文献   
107.
A hemoglobin expression system in Escherichia coli is described. In order to produce authentic human hemoglobin, we need to co-express both methionine aminopeptidase and globin genes under the control of a strong promoter. We have constructed three plasmids, pHE2, pHE4 and pHE7, for the expression of human normal adult hemoglobin and a plasmid, pHE9, for the expression of human fetal hemoglobin, in high yields. The globin genes can be derived from either synthetic genes or human globin cDNAs. The extra amino-terminal methionine residues of the expressed globins can be removed by the co-expressed methionine aminopeptidase. The heme is inserted correctly into the expressed alpha- globin from our expression plasmids. A fraction (approximately 25%) of the heme is not inserted correctly into the expressed beta- or gamma- globin. However, the incorrectly inserted hemes can be converted into the correct conformation by carrying out a simple oxidation-reduction process on the purified hemoglobin molecule. We have investigated the functional properties of the expressed hemoglobins by measuring their oxygen-binding properties and their structural features by obtaining their 1H-NMR spectra. Our results show that authentic human normal adult and fetal hemoglobins can be produced from our expression plasmids in E. coli and in high yields. Our expression system allows us to design and to produce any recombinant hemoglobins needed for our research on the structure-function relationship in hemoglobin.   相似文献   
108.
Melt‐spun poly(trimethylene terephthalate) (PTT) fibers were zone‐drawn and the structures and properties of the fibers were investigated in consideration of the spinning and zone‐drawing conditions. The draw ratio increased up to 4 with increasing drawing temperature to 180°C, at a maximum drawing stress of 220 MPa. Higher take‐up velocity gave lower drawability of the fiber. The PTT fiber taken up at 4000 rpm was hardly drawn, in spite of using maximum drawing stress, because a high degree of orientation had been achieved in the spinning procedure. However, an additional enhancement of birefringence was observed, indicating a further orientation of PTT molecules by zone drawing. The exotherm peak at 60°C disappeared and was shifted to a lower temperature with an increase in the take‐up velocity, which means that the orientation and crystallinity of the fiber increased. The d‐spacing of (002) plane increased with increasing take‐up velocity and draw ratio, whereas those of (010) and (001) planes decreased. In all cases, the crystal size increased with take‐up velocity and draw ratio. The cold‐drawn PTT fiber revealed a kink band structure, which disappeared as the drawing temperature was raised. The physical properties of zone‐drawn PTT fibers were improved as the draw ratio and take‐up velocity increased. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 3471–3480, 2001  相似文献   
109.
Room‐temperature deformation and fracture behaviors under microcompression of single crystal β‐silicon nitride (Si3N4) micropillars were investigated. Pillars were fabricated by focused ion beam (FIB) in large Si3N4 grains, located close to the basal and prismatic orientations, selected by electron backscatter diffraction (EBSD). The micromechanical test and the damage characterization were performed by nanoindentation and scanning electron microscopy (SEM), respectively. The elastic, plastic, and fracture properties, such as Young's modulus, yield stress, and rupture stress are considerably influenced by the pillar orientation. The activation of the type slip system was identified in case of basal oriented micropillars.  相似文献   
110.
Nanotechnology has been successfully implemented in many applications, such as nanoelectronics, nanobiomedicine, and nanodevices. However, this technology has rarely been applied to the oil and gas industry, especially in upstream exploration and production. The oil and gas industry needs to improve oil recovery and exploit unconventional resources. The cost of research and oil production is under immense pressure, and it is becoming more difficult to justify such investment when the crude oil price is weak and depressed. There is a widespread belief that nanotechnology may be exploited to develop novel nanomaterials with enhanced performance to combat these technological barriers. Increasing funding resources from governmental and global oil industry have been allocated to exploration, drilling, production, refining, and wastewater treatment. For example, nanosensors allow for precise measurement of reservoir conditions. Nanofluids prepared using functional nanomaterials may exhibit better performance in oil production processes, and nanocatalysts have improved the efficiency in oil refining and petrochemical processes. Nanomembranes enhance oil, water and gas separation, oil and gas purification, and the removal of impurities from wastewater. Functional nanomaterials can play an important role in the production of smart, reliable, and more durable equipment. In this review paper, we summarize the research progress and prospective applications of nanotechnology and nanomaterials in the oil and gas industry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号