首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   237634篇
  免费   30906篇
  国内免费   9138篇
电工技术   12441篇
技术理论   12篇
综合类   15336篇
化学工业   50111篇
金属工艺   12269篇
机械仪表   13021篇
建筑科学   18319篇
矿业工程   6123篇
能源动力   6243篇
轻工业   22677篇
水利工程   4096篇
石油天然气   11604篇
武器工业   1683篇
无线电   27731篇
一般工业技术   33114篇
冶金工业   10248篇
原子能技术   2290篇
自动化技术   30360篇
  2024年   869篇
  2023年   3287篇
  2022年   5840篇
  2021年   8099篇
  2020年   7390篇
  2019年   7956篇
  2018年   8478篇
  2017年   9580篇
  2016年   9296篇
  2015年   11459篇
  2014年   13689篇
  2013年   16489篇
  2012年   15556篇
  2011年   16356篇
  2010年   15201篇
  2009年   14476篇
  2008年   13858篇
  2007年   13189篇
  2006年   13010篇
  2005年   11144篇
  2004年   8173篇
  2003年   7444篇
  2002年   7575篇
  2001年   6489篇
  2000年   5972篇
  1999年   5503篇
  1998年   3911篇
  1997年   3188篇
  1996年   3242篇
  1995年   2589篇
  1994年   2030篇
  1993年   1464篇
  1992年   1170篇
  1991年   920篇
  1990年   667篇
  1989年   553篇
  1988年   476篇
  1987年   304篇
  1986年   218篇
  1985年   147篇
  1984年   106篇
  1983年   76篇
  1982年   72篇
  1981年   49篇
  1980年   61篇
  1979年   20篇
  1978年   6篇
  1976年   4篇
  1959年   4篇
  1951年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
Ti-based amorphous metallic glasses have excellent mechanical, physical, and chemical properties, which is an important development direction and research hotspot of metal composite reinforcement. As a stable, simple, efficient, and large-scale preparation technology of metallic powders, the gas atomization process provides an effective way of preparing amorphous metallic glasses. In this study, the controllable fabrication of a Ti-based amorphous powder, with high efficiency, has been realized by using gas atomization. The scanning electron microscope, energy-dispersive spectrometer, and X-ray diffraction are used to analyze surface morphology, element distribution, and phase structure, respectively. A microhardness tester is used to measure the mechanical property. An electrochemical workstation is used to characterize corrosion behavior. The results show that as-prepared microparticles are more uniform and exhibit good amorphous characteristics. The mechanical test shows that the hardness of amorphous powder is significantly increased as compared with that before preparation, which has the prospect of being an important part of engineering reinforced materials. Further electrochemical measurement shows that the corrosion resistance of the as-prepared sample is also significantly improved. This study has laid a solid foundation for expanding applications of Ti-based metallic glasses, especially in heavy-duty and corrosive domains.  相似文献   
22.
With co-substitution of (Li0.5Sm0.5) at A site and W at B site, the electrical properties of modified Ca0.92(Li0.5Sm0.5)0.08Bi2Nb2-xWxO9 [(CLS)BN-xW, x = 0, 0.015 and 0.03] piezoceramics with ultrahigh Curie temperature (TC) of > 930 °C were enhanced dramatically. The increased resistivity induced by the co-substitution ensure them to be polarized under an enough high field. Combined with the increase of spontaneous ferroelectric polarization (PS), the significant enhancements in the piezoelectric, dielectric and ferroelectric properties can be obtained in the composition x = 0.015. Furthermore, the piezoelectric activity (d33) and bulk resistivity (ρb) of (CLS)BN-0.015 W can be further enhanced at an appropriate sintering temperature. This optimum composition sintered at 1170 °C shows ultrahigh TC of ~948 °C, d33 of ~17.3 pC/N and ρb of ~6.9 MΩ cm at 600 °C, which are comparable to those of the reported high-temperature Aurivillius piezoceramics with TC > 850 °C.  相似文献   
23.
24.
朱宏  张蔚翔  郭成英 《中州煤炭》2021,(11):239-243
为应对电力系统安全分析中的停机问题,基于概率法的方式,将常用的确定停机计算与加入了概率法的概率停机进行比较,研究了二者的区别与其在长期投资方向的不同。在进行电力系统停机分析时,通常会分别从确定停机与概率停机的角度出发,对其应急状态下的潮流进行计算。但前者的方法可能导致极低概率的停机事件被忽略,进而影响长期的资金投资。通过加入概率法的计算,使得对单个停机事件的判定由其具体的频率来确定,增加了系统运行的稳定性。  相似文献   
25.
Because of its ability to change optical absorption dynamically by applied electric field, nickel oxide (NiO) is a promising anodic material in smart windows, which can improve energy conversion efficiency in construction buildings. Although many works have achieved high electrochromic performance with different method. The underlying mechanism is still not fully investigated. In this article, we prepared the NiO films with large specific surface area and high stability by electron beam evaporation. X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were employed to figure out the surface morphology and composition of as-deposited films. Afterwards, the electrochemical properties and optical performance of the prepared NiO films were investigated. On this basis, the origin of surface charge was fully analyzed by cyclic voltammetry and diffusion coefficient test. These experimental and theoretical results firmly confirm that both the surface reaction and capacitive effect bring about the excellent EC performance in NiO films. These results not only provide clear evidence about electrochemical kinetics in NiO films, but also offer some useful guidelines for the design of EC materials with higher performance and longer stability.  相似文献   
26.
A new aqueous slurry-based laminated object manufacturing process for porous ceramics is proposed: firstly, an organic mesh sheet is pre-paved as a pore-forming template before slurry layer scraping; secondly, the 2D pattern is built with laser outline cutting of the dried mesh–ceramic composite layer; finally, the pore structure is formed after degreasing and sintering. Alumina parts with porosities of 51.5 %, round hole diameters of 80 ± 5 μm were fabricated using 70 wt. % solid content slurry and 100 mesh nylon net. Using an organic mesh as the framework and template not only reduces the risk of damage of the green body but also ensures the regularity, uniformity and connectivity of the micron scaled pore network. The layer-by-layer drying method avoids the delamination phenomenon and improves the paving density. The new method can realize the flexible design of the pore structure by using various organic mesh templates.  相似文献   
27.
Recently, circularly polarized organic light-emitting diodes (CP-OLEDs) fabricated with thermally activated delayed fluorescence (TADF) emitters are developed rapidly. However, most devices are fabricated by vacuum deposition technology, and developing efficient solution-processed CP-OLEDs, especially nondoped devices, is still a challenge. Herein, a pair of triptycene-based enantiomers, (S,S)-/(R,R)-TpAc-TRZ, are synthesized. The novel chiral triptycene scaffold of enantiomers avoids their intermolecular π–π stacking, which is conducive to their aggregation-induced emission characteristics and high photoluminescence quantum yield of 85% in the solid state. Moreover, the triptycene-based enantiomers exhibit efficient TADF activities with a small singlet-triplet energy gap (ΔEST) of 0.03 eV and delayed fluorescence lifetime of 1.1 µs, as well as intense circularly polarized luminescence with dissymmetry factors (|gPL|) of about 1.9 × 10−3. The solution-processed nondoped CP-OLEDs based on (S,S)-/(R,R)-TpAc-TRZ not only display obvious circularly polarized electroluminescence signals with gEL values of +1.5 × 10−3 and −2.0 × 10−3, respectively, but also achieve high efficiencies with external quantum, current, and power efficiency up to 25.5%, 88.6 cd A−1, and 95.9 lm W−1, respectively.  相似文献   
28.
In this study, a kind of Ni-based superalloy specially designed for additive manufacturing (AM) was investigated. Thermo-Calc simulation and differential scanning calorimetry (DSC) analysis were used to determine phases and their transformation temperature. Experimental specimens were prepared by laser metal deposition (LMD) and traditional casting method. Microstructure, phase constitution and mechanical properties of the alloy were characterized by scanning electron microscopy (SEM), transmission scanning electron microscopy (TEM), X-ray diffraction (XRD) and tensile tests. The results show that this alloy contains two basic phases, γ/γ', in addition to these phases, at least two secondary phases may be present, such as MC carbides and Laves phases. Furthermore, the as-deposited alloy has finer dendrite, its mean primary dendrite arm space (PDAS) is about 30-45 μm, and the average size of γ' particles is 100-150 nm. However, the dendrite size of the as-cast alloy is much larger and its PDAS is 300-500 μm with secondary and even third dendrite arms. Correspondingly, the alloy displays different tensile behavior with different processing methods, and the as-deposited specimen shows better ultimate tensile stress (1,085.7±51.7 MPa), yield stress (697±19.5 MPa) and elongation (25.8%±2.2%) than that of the as-cast specimen. The differences in mechanical properties of the alloy are due to the different morphology and size of dendrites, γ', and Laves phase, and the segregation of elements, etc. Such important information would be helpful for alloy application as well as new alloy development.  相似文献   
29.
Aromatic and functional polymers with processibility derived from biobased starting materials are prerequisite considering sustainable society. Poly(2,5-benzimidazole)s are rigid-rod polymers to show ultrahigh thermal stability such as flame retardance, while usually suffer from poor solubility. Here, poly(benzimidazole-co-amide)s are synthesized from two biobased monomers, 3,4-diaminobenzoic acid and a semirigid comonomer, 4-aminohydrocinnamic acid. The copolymers with an amide composition of 80 mol% and higher are soluble in widely used polar solvents to fabricate the films keeping high flame retardance, which is comparable with popular high-performance polymers such as aromatic polyimides, polyetheretherketone, polyphenylene sulfide, etc.  相似文献   
30.
A novel method for fabricating a nano-Cu/Si3N4 ceramic substrate is proposed. The nano-Cu/Si3N4 ceramic substrate is first fabricated using spark plasma sintering (SPS) with the addition of nanoscale multilayer films (Ti/TiN/Ti/TiN/Ti) as transition layers. The microstructures of the nano-Cu metal layer and the interface between Cu and Si3N4 are investigated. The results show that a higher SPS temperature increases the grain size of the nano-Cu metal layer and affects the hardness. The microstructure of the transition layer evolves significantly after SPS. Ti in the transition layer can react with Si3N4 and with nano-Cu to form interfacial reaction layers of TiN and Ti–Cu, respectively; these ensure stronger bonding between nano-Cu and Si3N4. Higher SPS temperatures improve the diffusion ability of Ti and Cu, inducing the formation of Ti3Cu3O compounds in the nano-Cu metal layer and Ti2Cu in the transition layer. This study provides an important strategy for designing and constructing a new type of ceramic substrate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号