首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119615篇
  免费   10187篇
  国内免费   4688篇
电工技术   6897篇
技术理论   2篇
综合类   6067篇
化学工业   19983篇
金属工艺   6868篇
机械仪表   8202篇
建筑科学   6483篇
矿业工程   2243篇
能源动力   4321篇
轻工业   8571篇
水利工程   2151篇
石油天然气   3551篇
武器工业   1017篇
无线电   16108篇
一般工业技术   17477篇
冶金工业   7161篇
原子能技术   1543篇
自动化技术   15845篇
  2024年   312篇
  2023年   1403篇
  2022年   2681篇
  2021年   4114篇
  2020年   3040篇
  2019年   2683篇
  2018年   3134篇
  2017年   3521篇
  2016年   3746篇
  2015年   4191篇
  2014年   5812篇
  2013年   7279篇
  2012年   8747篇
  2011年   9599篇
  2010年   8348篇
  2009年   8228篇
  2008年   8002篇
  2007年   7096篇
  2006年   6555篇
  2005年   5444篇
  2004年   4453篇
  2003年   4178篇
  2002年   4155篇
  2001年   3600篇
  2000年   2494篇
  1999年   1981篇
  1998年   2123篇
  1997年   1495篇
  1996年   1217篇
  1995年   876篇
  1994年   702篇
  1993年   569篇
  1992年   406篇
  1991年   360篇
  1990年   339篇
  1989年   301篇
  1988年   239篇
  1987年   203篇
  1986年   142篇
  1985年   120篇
  1984年   100篇
  1983年   75篇
  1982年   48篇
  1981年   48篇
  1980年   38篇
  1979年   36篇
  1978年   32篇
  1977年   39篇
  1976年   61篇
  1975年   22篇
排序方式: 共有10000条查询结果,搜索用时 16 毫秒
991.
Cell division cycle 25A (Cdc25A) is a dual-specificity phosphatase that is overexpressed in several cancer cells and promotes tumorigenesis. In normal cells, Cdc25A expression is regulated tightly, but the changes in expression patterns in cancer cells that lead to tumorigenesis are unknown. In this study, we showed that ubiquitin-specific protease 29 (USP29) stabilized Cdc25A protein expression in cancer cell lines by protecting it from ubiquitin-mediated proteasomal degradation. The presence of USP29 effectively blocked polyubiquitination of Cdc25A and extended its half-life. CRISPR-Cas9-mediated knockdown of USP29 in HeLa cells resulted in cell cycle arrest at the G0/G1 phase. We also showed that USP29 knockdown hampered Cdc25A-mediated cell proliferation, migration, and invasion of cancer cells in vitro. Moreover, NSG nude mice transplanted with USP29-depleted cells significantly reduced the size of the tumors, whereas the reconstitution of Cdc25A in USP29-depleted cells significantly increased the tumor size. Altogether, our results implied that USP29 promoted cell cycle progression and oncogenic transformation by regulating protein turnover of Cdc25A.  相似文献   
992.
993.
Hydrogels are recognized as one of the most promising materials for e-skin devices because of their unique applicable functionalities such as flexibility, stretchability, biocompatibility, and conductivity. Beyond the excellent sensing functionalities, the e-skin devices further need to secure a target-oriented 3D structure to be applied onto various body parts having complex 3D shapes. However, most e-skin devices are still fabricated in simple 2D film-type devices, and it is an intriguing issue to fabricate complex 3D e-skin devices resembling target body parts via 3D printing. Here, a material design guideline is provided to prepare multifunctional hydrogels and their target-oriented 3D structures based on extrusion-based 3D printing. The material design parameters to realize target-oriented 3D structures via 3D printing are systematically derived from the correlation between material design of hydrogels and their gelation characteristics, rheological properties, and 3D printing processability for extrusion-based 3D printing. Based on the suggested material design window, ion conductive self-healable hydrogels are designed and successfully applied to extrusion-based 3D printing to realize various 3D shapes.  相似文献   
994.
Polymer systems have typical multiscale characteristics, both in space and time. The mesoscopic properties of polymers are difficult to describe through traditional experimental approaches. Dissipative particle dynamics (DPD) is a simulation method used for solving mesoscale problems of complex fluids and soft matter. The mesoscopic properties of polymer systems, such as conformation, dynamics, and transport properties, have been studied extensively using DPD. This paper briefly summarizes the application of DPD to research involving microchannel flow, electrospinning, free-radical polymerization, polymer self-assembly processes, polymer electrolyte fuel cells, and biomedical materials. The main features and possible development avenues of DPD are described as well.  相似文献   
995.
Actuators made of soft matter are needed for a variety of fields ranging from biomedical devices to soft robotics to microelectromechanical systems. While there are a variety of excellent methods of soft actuation known, the field is still an area of intense research activity as new niches and needs emerge with new technology development. Here, a soft actuation system is described, based on a core-multi-shell particle, which moves via photothermal expansion. The system consists of a novel polystyrene-based thermally expandable microsphere, with a secondary shell of a silicate-silane graft copolymer, to which gold nanoparticles are covalently linked. The gold nanoparticles act as photothermal nano-transducers, converting light energy into the thermal energy necessary for microsphere expansion, which in turn results in material movement. Actuation is shown in isolated particles in thermal and photothermal regimes using metal ceramic heaters or 520 nm laser illumination, respectively. Macroscale actuation is demonstrated by making a composite material of particles suspended in the transparent elastomer polydimethylsiloxane. The sample demonstrates an inchworm-like movement by starting from an arched geometry. Overall, this work describes a new particle-based actuation method for soft materials, and demonstrates its utility in driving the movement of a composite elastomer.  相似文献   
996.
In an effort to develop highly functionalized flame retardant materials, hybrid nanocoatings are prepared by alternately depositing a positively charged polyaniline (PANi) and negatively charged montmorillonite (MMT) using the layer-by-layer (LbL) assembly technique. Carbon nanotubes (CNTs) are employed in polymer nanocomposites as effective reinforcement, where nanotubes are stabilized in MMT aqueous solution. The 3D structure and high density of CNTs deposited in the PANi/CNTs-MMT multilayers produce thicker and heavier coatings in comparison to the LbL assemblies without CNTs. Vertical and horizontal flame testing show that the incorporation of CNTs improves fire resistance. Additionally, cone calorimetry reveals that stacking two nanomaterials (MMT and CNTs) in a single coating shows a significant reduction in peak heat release rate (up to 51%), total smoke release (up to 47%), and total heat release (up to 37%) for the polyurethane foam. The enhancement of flame retardancy is attributed to a synergistic effect; MMT serves as a physical barrier that retards the diffusion of heat and gas. The addition of CNTs strengthens the thermal stability and high char yield. These results, coupled with the simplicity with which the LbL deposition is applied, present a viable alternative to halogen-free flame retardant nanocoatings to natural and synthetic fibers.  相似文献   
997.
In this study, a kind of imidazole type poly(ionic liquid) ([PEP-MIM]Cl) is synthesized, which can disperse carbon effectively. [PEP-MIM]Cl is used as an intermediate to coat carbon on the poly(acrylic acid)(PAA-co-MBA) via ion exchange to obtain conductive polymer composite (CPC). A series of characterizations are performed. Experiments show that carbon can be coated on the PAA-co-MBA uniformly, and compared with using carbon as filler, this method requires less carbon to achieve good conductive performance. The carbon layer on the polymer's surface is enriched via the swelling-shrinking properties of PAA-co-MBA according to the SEM images. Furthermore, in combination with 3D printing technology, PAA-co-MBA can be designed into different shapes to achieve various functions such as pressure-sensing element. Finally, a new type of CPC named carbon clad polymeric laminate (CCPL) is prepared by using the carbon coating method and 3D printing technology. It has the potential to replace copper clad laminate (CCL) and printed circuit board (PCB), to a certain extent. This technology expands the preparation method and application of the CPC such as flexible and wearable conductive fabrics.  相似文献   
998.
A novel autophagy inhibitor, autophazole (Atz), which promoted cancer cell death via caspase activation, is described. This compound was identified from cell-based high-content screening of an imidazole library. The results showed that Atz was internalized into lysosomes of cells where it induced lysosomal membrane permeabilization (LMP). This process generated nonfunctional autolysosomes, thereby inhibiting autophagy. In addition, Atz was found to promote LMP-mediated apoptosis. Specifically, LMP induced by Atz caused release of cathepsins from lysosomes into the cytosol. Cathepsins in the cytosol cleaved Bid to generate tBid, which subsequently activated Bax to induce mitochondrial outer membrane permeabilization (MOMP). This event led to cancer cell death via caspase activation. Overall, the findings suggest that Atz will serve as a new chemical probe in efforts aimed at gaining a better understanding of the autophagic process.  相似文献   
999.
1000.
胀断连杆是汽车精密传动用高端产品,需具高强高韧和裂解加工脆性解理断裂特性。连铸化生产高碳易切削胀断连杆用微合金非调质钢是当前的发展方向。基于大方坯连铸生产典型工艺及其铸态组织、成分均匀性分析,研究了胀断连杆加工过程常见断口形貌不合的钢坯遗传性因素。以常用德系C70S6钢为例,采用250 mm×280 mm断面弧形连铸机,解析其在一定结晶器电磁搅拌条件下所浇铸大方坯的铸态低倍结构和枝晶形貌,并分析其不同晶区的成分分布特点。结果表明,当前连铸条件下大方坯中心缩孔和后续热轧棒材探伤合格率可控,但铸坯初凝坯壳凝固前沿发生明显的C、S负偏析白亮带区及其柱状晶偏转现象。金相试样图像分析和相场法凝固模拟表明,铸坯中柱状晶具有逆流生长特征,其偏转角是一次枝晶尖端向旋流方向逆向生长的结果。自铸坯角部至宽、窄面中心,实测柱状晶区的一次枝晶偏转角约在?7°到27°之间。利用X射线能谱分析(EDS)进一步检测了钢中主要合金元素Si、Mn、Mo在铸坯不同晶区的分布,揭示了其铸态偏析特征与差异性。据此,探讨了这种铸态组织和成分偏析对后续热轧棒材和连杆成品组织的遗传性,以及对其胀断加工断口不合的影响,可为源头铸态质量的控制提供依据。   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号