首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   681篇
  免费   50篇
  国内免费   1篇
电工技术   10篇
综合类   1篇
化学工业   172篇
金属工艺   11篇
机械仪表   60篇
建筑科学   12篇
矿业工程   1篇
能源动力   25篇
轻工业   79篇
水利工程   2篇
无线电   133篇
一般工业技术   126篇
冶金工业   27篇
原子能技术   5篇
自动化技术   68篇
  2024年   3篇
  2023年   7篇
  2022年   20篇
  2021年   21篇
  2020年   28篇
  2019年   25篇
  2018年   33篇
  2017年   36篇
  2016年   33篇
  2015年   18篇
  2014年   16篇
  2013年   50篇
  2012年   41篇
  2011年   73篇
  2010年   32篇
  2009年   44篇
  2008年   34篇
  2007年   27篇
  2006年   29篇
  2005年   28篇
  2004年   17篇
  2003年   13篇
  2002年   16篇
  2001年   5篇
  2000年   8篇
  1999年   9篇
  1998年   11篇
  1997年   9篇
  1996年   12篇
  1995年   10篇
  1994年   3篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   4篇
  1979年   1篇
  1976年   2篇
  1972年   1篇
排序方式: 共有732条查询结果,搜索用时 15 毫秒
71.
A novel, reliable wavelength-division-multiplexed passive optical network (WDM-PON) with self-protection capability is proposed. By utilizing the routing characteristics of N x N arrayed waveguide grating, the proposed architecture can provide automatic protection against any fiber cut between central office and optical network unit (ONU). Compared with the conventional schemes, this scheme adopts colorless ONUs, thus leading to a decrease in the costs of operation, administration, and maintenance, as well as the production cost. Without the performance degradation, the proposed WDM-PON scheme can offer a reliable network service. In the experiment, the protection performance was demonstrated in the carrier-distributed 1.25-Gb/s WDM transmission over 20-km single-mode fiber.  相似文献   
72.
73.
Park  Shinjae  Mun  Saehun  Kim  Yong-Ro 《Food science and biotechnology》2020,29(10):1373-1380
Food Science and Biotechnology - Rosemary extract (RE) has significant antioxidant and antibacterial properties; however, the application of RE to areas with an aqueous solution is limited due to...  相似文献   
74.
ABSTRACT:  Singlet oxygen quenching activity of Trolox, a water-soluble derivative of tocopherol, was studied by electron spin resonance (ESR) spectroscopy in a buffer solution (pH 7.4) containing methylene blue (MB), 2,2,6,6-tetramethyl-4-piperidone (TMPD) after light illumination for 30 min. Trolox at the concentration of 125 μM quenched 89.1% singlet oxygen in the system. Trolox showed significantly higher singlet oxygen quenching activity than ascorbic acid in the buffer solution ( P  < 0.05). Riboflavin in phosphate buffer solutions was degraded very fast under fluorescent light illumination. The photodegradation rate of riboflavin at pH 8.5 was significantly higher than pHs 4.5 and 6.5 ( P  < 0.05). Lumiflavin was also degraded under the fluorescent light illumination, but its degradation rate was much lower than that of riboflavin under the same light intensity. Unlike riboflavin, the rate of lumiflavin photodegradation was the greatest at pH 4.5 and followed by pHs 6.5 and 8.5, in a decreasing order. Trolox greatly protected the photodegradation of riboflavin and lumiflavin. The protective activities of Trolox against the photodegradation of riboflavin and lumiflavin were also pH dependent. The treatments of 5 mM Trolox in the buffer solutions of pHs 8.5 and 6.5 exhibited 56.1% and 31.7% protection of riboflavin against degradation during 120 min light illumination, respectively. The treatments of Trolox at the concentrations of 1, 3, and 5 mM in the buffer of 6.5 exhibited 14.8%, 58.4%, and 81.4% protection of lumiflavin against degradation during 24 h light illumination, respectively.  相似文献   
75.
The U.S. National Institute of Standards and Technology (NIST) provides a number of particulate matter (PM) standard reference materials (SRM) for use in environmental and toxicological methodology and research. We present here the first analysis with respect to the molecular structure of the carbon in three such NIST SRM samples, i.e., diesel engine exhaust soot from heavy duty equipment engines (SRM 1650), diesel soot from a forklift engine (SRM 2975), and urban PM collected in St. Louis, MO (SRM 1648), with near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. The NEXAFS spectra of the two diesel soot samples appear quite similar, while they differ significantly from the urban PM spectrum, in agreement with X-ray diffraction data published recently. Such comparison is made in terms of aromatic and aliphatic carbon species, as well as by a general comparison with graphitic materials. Both diesel soot SRM samples contain basic graphitic structures, but the presence of exciton resonance and extended X-ray absorption fine structure oscillations in SRM 1650 and the lack therof in SRM 2975 suggest that SRM 1650 is the more graphitic material.The presence of polycyclic aromatic hydrocarbons, which have a characteristic NEXAFS resonance at the same position as graphite, can obscure the graphitic character of soot, unless an extraction of the organic matter is made. Our NEXAFS data do not suggest that the urban PM sample SRM 1648 contains a substantial amount of graphite-like material.  相似文献   
76.
Three types of emulsions (β-Lg-, β-Lg-pectin-, and β-Lg-ι-carrageenan-coated emulsions) with controlled electrostatic and/or steric interactions were prepared, and then examined for their freeze-dry stability in the absence or presence of 6% maltodextrin (MD). In the absence of MD, all emulsions were highly unstable to freeze-drying, nevertheless, the β-Lg-pectin-coated emulsions (d 32 =5.37, d 43 =35.11 μm) that were stabilized mostly by steric repulsion showed better stability than the other 2 emulsions (no dried power was obtained). The freeze-dry instability of all emulsions was improved with MD addition, particularly in the β-Lg- (d 43 =1.10 μm) and β-Lg-ι-carrageenan-coated emulsions (d 43 =0.58 μm) that were stabilized by electrostatic repulsive force. In the presence of MD, the β-Lg-ι-carrageenan-coated emulsions showed the highest stability to freeze-drying, which was attributed to the cooperative impact of steric and electrostatic repulsion. This study implicates that the major mechanism for stabilizing emulsions against freeze-drying could be different depending on the absence or presence of MD.  相似文献   
77.
To investigate structural changes of resistant starch (RS) caused by mild-acid treatment, native maize starch, retrograded (RS3), and cross-linked (RS4) resistant starches, prepared from maize starch, were hydrolyzed with 0.1 M HCl at 35 °C for 30 days. The hydrolysis rate of RS3 was shown to be the highest, at 44.1% after 30 days of the hydrolysis. The hydrolysis rapidly progressed upto 10 days but gradually changed after that. Native starch and RS4 showed less than 5% of hydrolysis during the period of hydrolysis. As for the RS level of the residue after the hydrolysis, RS4 did not show any significant change, but RS3 exhibited an increase of up to 25.9% after 30 days, which led to 88% increase in comparison with 13.8% at the initial stage. As a result of examining the molecular weight (MW) of RS3 by the SEC-MALLS-RI system, the non-hydrolyzed RS3 exhibited three peaks, having MW 53.4 × 106, 7.4 × 106, and 0.8 × 106, respectively, but the MW of the molecules decreased to 4.9 × 106 and 0.6 × 106 after 7 days of hydrolysis. It was difficult to verify the MW of RS4 because this was not dispersed in 1 M NaOH. The crystallinity of native starches, RS3 and RS4, by X-ray diffractometry of the residue hydrolyzed with 0.1 M HCl was equal to that of the non-hydrolyzed starch. The peak intensity at 2θ = 17° of RS3 increased sharply after hydrolysis.  相似文献   
78.
An analytical study on the viscous dissipation effect on entropy generation in laminar fully developed forced convection of water–alumina nanofluid in circular microchannels is reported. In the first-law analysis, closed form solutions of the temperature distributions in the radial direction for the models with and without viscous dissipation term in the energy equation are obtained. The results show that the heat transfer coefficient decreases with nanoparticle volume fraction largely in the laminar regime of nanofluid flow in microchannel when the viscous dissipation effect is taken into account. In the second-law analysis, the two models are compared by analyzing their relative deviations in entropy generation for different Reynolds number and nanoparticle volume fraction. When the viscous dissipation is taken into account, the temperature distribution is prominently affected and consequently the entropy generation ascribable to the heat transfer irreversibility is significantly increased. The increase of entropy generation induced by the increase of nanoparticle volume fraction is attributed to the increase of both the thermal conductivity and viscosity of nanofluid which causes augmentation in the heat transfer and fluid friction irreversibilities, respectively. By incorporating the viscous dissipation effect, both thermal performance and exergetic effectiveness for forced convection of nanofluid in microchannels dwindle with nanoparticle volume fraction, contrary to the widespread conjecture that nanofluids possess advantage over pure fluid associated with higher overall effectiveness from the aspects of first-law and second-law of thermodynamics.  相似文献   
79.
Acacia auriculiformis heartwood and bark were obtained, dried under shelter for 2 weeks and pulverized into powdered form to be extracted with the following extraction temperatures of 35, 55 and 75 °C and methanol solvent percentages of 55, 65 and 75 % for 3 h in a water bath. The material ratio used was 1:20 (pulverized samples: solvent). The total phenolics and flavonoids yield was determined by using a Thermo Scientific Genesys 10 UV–Visible Spectrophotometer. The optimum total phenolics and flavonoids yield were achieved by extraction with an extraction temperature of 75 °C and a methanol solvent percentage of 75 % for both the heartwood [75.44 % (total phenolics) and 36.64 % (total flavonoids)] and bark [87.18 % (total phenolics) and 99.10 % (total flavonoids)] of A. auriculiformis trees.  相似文献   
80.
Plasmonic biosensors have demonstrated superior performance in detecting various biomolecules with high sensitivity through simple assays. Scaled‐up, reproducible chip production with a high density of hotspots in a large area has been technically challenging, limiting the commercialization and clinical translation of these biosensors. A new fabrication method for 3D plasmonic nanostructures with a high density, large volume of hotspots and therefore inherently improved detection capabilities is developed. Specifically, Au nanoparticle‐spiked Au nanopillar arrays are prepared by utilizing enhanced surface diffusion of adsorbed Au atoms on a slippery Au nanopillar arrays through a simple vacuum process. This process enables the direct formation of a high density of spherical Au nanoparticles on the 1 nm‐thick dielectric coated Au nanopillar arrays without high‐temperature annealing, which results in multiple plasmonic coupling, and thereby large effective volume of hotspots in 3D spaces. The plasmonic nanostructures show signal enhancements over 8.3 × 108‐fold for surface‐enhanced Raman spectroscopy and over 2.7 × 102‐fold for plasmon‐enhanced fluorescence. The 3D plasmonic chip is used to detect avian influenza‐associated antibodies at 100 times higher sensitivity compared with unstructured Au substrates for plasmon‐enhanced fluorescence detection. Such a simple and scalable fabrication of highly sensitive 3D plasmonic nanostructures provides new opportunities to broaden plasmon‐enhanced sensing applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号