首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5238篇
  免费   481篇
  国内免费   202篇
电工技术   315篇
技术理论   1篇
综合类   294篇
化学工业   742篇
金属工艺   335篇
机械仪表   320篇
建筑科学   504篇
矿业工程   139篇
能源动力   155篇
轻工业   297篇
水利工程   86篇
石油天然气   310篇
武器工业   51篇
无线电   702篇
一般工业技术   700篇
冶金工业   323篇
原子能技术   63篇
自动化技术   584篇
  2024年   20篇
  2023年   89篇
  2022年   147篇
  2021年   214篇
  2020年   151篇
  2019年   139篇
  2018年   163篇
  2017年   172篇
  2016年   143篇
  2015年   197篇
  2014年   227篇
  2013年   325篇
  2012年   298篇
  2011年   389篇
  2010年   291篇
  2009年   233篇
  2008年   254篇
  2007年   232篇
  2006年   273篇
  2005年   249篇
  2004年   171篇
  2003年   145篇
  2002年   113篇
  2001年   109篇
  2000年   131篇
  1999年   156篇
  1998年   143篇
  1997年   118篇
  1996年   120篇
  1995年   100篇
  1994年   82篇
  1993年   72篇
  1992年   58篇
  1991年   40篇
  1990年   43篇
  1989年   18篇
  1988年   14篇
  1987年   14篇
  1986年   13篇
  1985年   14篇
  1984年   10篇
  1983年   10篇
  1982年   6篇
  1977年   3篇
  1976年   2篇
  1975年   2篇
  1968年   1篇
  1967年   1篇
  1965年   1篇
  1951年   1篇
排序方式: 共有5921条查询结果,搜索用时 31 毫秒
101.
针对并网逆变器控制中传统电压电流双闭环控制策略抗扰能力不足的问题,构造线性自抗扰控制(LADRC)取代电压外环控制。为了提高线性扩张状态观测器(LESO)的观测精度,通过在LESO中引入直流母线电压微分与其观测值之间的误差项,对传统LADRC进行了改进。从频域分析上证明了改进型LADRC的跟踪性能和抗扰性能均优于传统LADRC。仿真结果表明,所提出的改进型LADRC可确保并网逆变器具有更好的稳态与暂态性能,特别是在电网电压跌落和负载突变方面具有优越性。  相似文献   
102.
输出窄线宽、超短脉冲的全固态激光器在医疗美容、加工业领域的发展潜力巨大。本文开展了被动调Q微片激光器的研究。采用LD泵浦Nd:Ce:YAG、Cr:YAG微片键合晶体的方案。激光器输出脉冲的重复频率为10 Hz,脉冲宽度被压缩至503 ps,最大脉冲能量为197μJ,能量的均方值稳定性为3%,输出激光峰值波长为1 064.53 nm,光谱线宽为0.06 nm。光束质量M2因子在x和y方向上分别为1.32和1.29。  相似文献   
103.
张楚蕙  陆健  张宏超  高楼  谢知健 《红外与激光工程》2022,51(2):20210892-1-20210892-7
双脉冲激光诱导等离子体在激光加工、元素检测、材料去除等领域有广阔的应用前景和发展空间,对其进行诊断具有重要意义。针对延迟双脉冲激光诱导铝等离子体的作用效果和影响机理,采用双波长干涉法对其时间演化规律展开研究。基于马赫-曾德尔干涉仪搭建了双波长干涉诊断系统,得到了双脉冲激光诱导等离子体干涉图。通过对干涉图的处理和分析,得到了等离子体电子密度随双脉冲激光延迟时间的变化规律。结果表明,随着双脉冲激光延迟时间的增加,第二束脉冲激光对等离子体电子密度的增强效果先加强后减弱。其中,双脉冲激光延迟时间为10 ns时,对等离子体电子密度的增强效果最强,在30 ns时刻,其中心区域平均电子密度可达6.49×1019 cm?3,相较于同等能量单脉冲激光诱导等离子体提升了26%。同时研究了延迟时间对第二束脉冲激光作用机制的影响。研究结果为双脉冲激光诱导等离子体的优化方向提供了参考。  相似文献   
104.
作为微波真空电子器件的常用材料之一,无氧铜材料的蒸发特性会对微波真空电子器件的电性能产生影响.该文利用超高真空测试设备,研究了处理工艺对无氧铜材料的蒸发性能的影响,采用X射线测厚仪测试了蒸发的铜膜厚度,用扫描电镜(SEM)观测了无氧铜材料的表面形貌.结果表明表面宏观形貌粗糙度对无氧铜材料的蒸发性能影响不大,但处理工艺对蒸发性能影响很大;无氧铜材料经过酸洗后,会大大增加蒸发量;无氧铜材料经过烧氢处理,可降低蒸发量,而经过去油清洗并烧氢处理的无氧铜的蒸发量极低.对无氧铜材料进行了表面分析,发现无氧铜材料的真空蒸发性能与材料的表面形貌状态有关,当表面微观形貌比较光滑、无孔洞等缺陷时,无氧铜材料的真空蒸发量就少.  相似文献   
105.

In this paper, we develop a novel non-parametric online actor-critic reinforcement learning (RL) algorithm to solve optimal regulation problems for a class of continuous-time affine nonlinear dynamical systems. To deal with the value function approximation (VFA) with inherent nonlinear and unknown structure, a reproducing kernel Hilbert space (RKHS)-based kernelized method is designed through online sparsification, where the dictionary size is fixed and consists of updated elements. In addition, the linear independence check condition, i.e., an online criteria, is designed to determine whether the online data should be inserted into the dictionary. The RHKS-based kernelized VFA has a variable structure in accordance with the online data collection, which is different from classical parametric VFA methods with a fixed structure. Furthermore, we develop a sparse online kernelized actor-critic learning RL method to learn the unknown optimal value function and the optimal control policy in an adaptive fashion. The convergence of the presented kernelized actor-critic learning method to the optimum is provided. The boundedness of the closed-loop signals during the online learning phase can be guaranteed. Finally, a simulation example is conducted to demonstrate the effectiveness of the presented kernelized actor-critic learning algorithm.

  相似文献   
106.
107.
Two-dimensional layers of metal dichalcogenides have attracted much attention because of their ultrathin thickness and potential applications in electronics and optoelectronics.Monolayer SnS2,with a band gap of ~2.6 eV,has an octahedral lattice made of two atomic layers of sulfur and one atomic layer of tin.Till date,there have been limited reports on the growth of large-scale and high quality SnS2 atomic layers and the investigation of their properties as a semiconductor.Here,we report the chemical vapor deposition (CVD) growth of atomic-layer SnS2 with a large crystal size and uniformity.In addition,the number of layers can be changed from a monolayer to few layers and to bulk by changing the growth time.Scanning transmission electron microscopy was used to analyze the atomic structure and demonstrate the 2H stacking poly-type of different layers.The resultant SnS2 crystals is used as a photodetector with external quantum efficiency as high as 150%,suggesting promise for optoelectronic applications.  相似文献   
108.
109.
This study presents the synergistic effects of graphene nanosheets (GNSs) and carbon fibers (CFs) additions on the electrical and electromagnetic shielding properties of GNS/CF/polypropylene (PP) composites. These composites were fabricated by the melt blending of different ratios of GNSs and CFs (20:0, 15:5, 10:10, 5:15 and 0:20 wt/wt%) into a PP polymer matrix using a Brabender mixer. Besides, the chemical and crystalline structures and the thermal stability of the resultant GNS/CF/PP composites were characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) and thermogravimetric analysis (TGA). FT-IR and XRD showed that with the addition of GNSs content, transmittances at 1373.4?cm?1 and 1454.4?cm?1 became smaller and the characteristic peak at 26.82° became stronger. TGA showed that the GNS/CF/PP composite can be used at high temperature below 456°C. Blending 10?wt% CFs and 10?wt% GNSs into the PP polymer resulted in excellent conductivity (0.397 S/cm), which indicated the occurrence of the critical percolation threshold phenomenon, and also reached the maximum electromagnetic shielding effectiveness (EMSE) of 20?dB at 1.28–2.00?GHz. Laminated with five layers of composites, its EMSE achieved 25–38?dB at 0.3–3.0?GHz, corresponding to blocking of 94.38–98.74% electromagnetic waves.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号