首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   538篇
  免费   15篇
  国内免费   3篇
电工技术   20篇
化学工业   231篇
金属工艺   13篇
机械仪表   18篇
建筑科学   5篇
能源动力   25篇
轻工业   56篇
无线电   25篇
一般工业技术   101篇
冶金工业   29篇
原子能技术   8篇
自动化技术   25篇
  2024年   1篇
  2023年   5篇
  2022年   2篇
  2021年   7篇
  2020年   6篇
  2019年   6篇
  2018年   5篇
  2017年   6篇
  2016年   10篇
  2015年   7篇
  2014年   15篇
  2013年   40篇
  2012年   16篇
  2011年   34篇
  2010年   24篇
  2009年   25篇
  2008年   28篇
  2007年   23篇
  2006年   18篇
  2005年   24篇
  2004年   24篇
  2003年   25篇
  2002年   22篇
  2001年   8篇
  2000年   8篇
  1999年   10篇
  1998年   18篇
  1997年   11篇
  1996年   17篇
  1995年   12篇
  1994年   13篇
  1993年   8篇
  1992年   8篇
  1991年   8篇
  1990年   5篇
  1989年   3篇
  1988年   5篇
  1987年   5篇
  1986年   4篇
  1985年   6篇
  1984年   9篇
  1983年   5篇
  1982年   5篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1975年   3篇
排序方式: 共有556条查询结果,搜索用时 15 毫秒
551.
The introduction of metallic drug-eluting stents has reduced the risk of restenosis and widened the indications of percutaneous coronary intervention in treatment of coronary artery disease. However, this medical device can induce hypersensitive reaction that interferes with the endothelialization and healing process resulting in late persistent or acquired malapposition of the permanent metallic implant. Delayed endotheliaization and malapposition may lead to late and very late stent thrombosis. Bioresorbable scaffolds (BRS) have been introduced to potentially overcome these limitations, as they provide temporary scaffolding and then disappear, liberating the treated vessel from its cage. Magnesium is an essential mineral needed for a variety of physiological functions in the human body and its bioresorbable alloy has the strength-to-weight ratio comparable with that of strong aluminum alloys and alloy steels. The aim of this review is to present the new developments in Magnesium BRS technology, to describe its clinical application and to discuss the future prospects of this innovative therapy.  相似文献   
552.
For the realization of a next-generation energy society, further improvement in the activity of water-splitting photocatalysts is essential. Platinum (Pt) is predicted to be the most effective cocatalyst for hydrogen evolution from water. However, when the number of active sites is increased by decreasing the particle size, the Pt cocatalyst is easily oxidized and thereby loses its activity. In this study, a method to load ultrafine, monodisperse, metallic Pt nanoclusters (NCs) on graphitic carbon nitride is developed, which is a promising visible-light-driven photocatalyst. In this photocatalyst, a part of the surface of the Pt NCs is protected by sulfur atoms, preventing oxidation. Consequently, the hydrogen-evolution activity per loading weight of Pt cocatalyst is significantly improved, 53 times, compared with that of a Pt-cocatalyst loaded photocatalyst by the conventional method. The developed method is also effective to enhance the overall water-splitting activity of other advanced photocatalysts such as SrTiO3 and BaLa4Ti4O15.  相似文献   
553.
The present study focused on the design and synthesis of covalent DNA dendrons bearing multivalent cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODNs) that can stimulate the immune system through the activation of TLR9. These dendrons were synthesized using branching trebler phosphoramidite containing three identical protecting groups that enabled the simultaneous synthesis of multiple strands on a single molecule. Compared with linear ODNs, covalent DNA dendrons were found to be more resistant to nuclease degradation and were more efficiently taken up by macrophage-like RAW264.7 cells. Cellular uptake was suggested to be mediated by macrophage scavenger receptors. The covalent DNA dendrons composed of multivalent immunostimulatory branches enhanced the secretion of proinflammatory cytokines TNF-α and IL-6 from RAW264.7 cells, and 9-branched DNA dendrons showed the highest enhancement. Given their enhanced efficacy, we expect covalent DNA dendrons to be useful structures of oligonucleotide medicines.  相似文献   
554.
All-solid-state lithium–sulfur (Li/S) batteries are promising next-generation energy-storage devices owing to their high capacities and long cycle lives. The Li2S active material used in the positive electrode has a high theoretical capacity; consequently, nanocomposites composed of Li2S, solid electrolytes, and conductive carbon can be used to fabricate high-energy-density batteries. Moreover, the active material should be constructed with both micro- and nanoscale ion-conduction pathways to ensure high power. Herein, a Li2S–Li2O–LiI positive electrode is developed in which the active material is dispersed in an amorphous matrix. Li2S–Li2O–LiI exhibits high charge–discharge capacities and a high specific capacity of 998 mAh g−1 at a 2 C rate and 25 °C. X-ray photoelectron spectroscopy, X-ray diffractometry, and transmission electron microscopy observation suggest that Li2O–LiI provides nanoscale ion-conduction pathways during cycling that activate Li2S and deliver large capacities; it also exhibits an appropriate onset oxidation voltage for high capacity. Furthermore, a cell with a high areal capacity of 10.6 mAh cm–2 is demonstrated to successfully operate at 25 °C using a Li2S–Li2O–LiI positive electrode. This study represents a major step toward the commercialization of all-solid-state Li/S batteries.  相似文献   
555.
The partial discharge (PD) waveform reflects the evolution process of electron avalanche in the discharge space. The authors expect to estimate the condition of the discharge space based on the PD waveform characteristics. The semi-conductive sheet was attached to the insulator to simulate the decrease in surface resistance due to deterioration. With the reduction of the surface resistivity, the shoulder appeared on the rising part of the PD waveform and the rise time of the PD waveform became longer. In addition, we simulated the change in the rise time using an equivalent circuit model. The displacement current was calculated from the surface potential distribution estimated by the diffusion equation, and the PD current was simulated by summing up all the current components. As a result, the shoulder was reproduced at the rising part of the PD waveform in the simulation as well. The surface resistance was estimated from the PD waveform by fitting with the experimental results.  相似文献   
556.
The experiments of pre-ionized inert gas plasma MHD electrical power generation are conducted, and the performance and plasma behavior in the experimental generator are examined through time-dependent r-_ two-dimensional numerical simulation. In the experiment, an enthalpy extraction ratio of 4.01% has been obtained with a disk-shaped MHD generator with radio-frequency pre-ionization. In the numerical simulation, at an assumed inlet electron temperature around 5600 K (inlet ionization degree 0:10 × 10−4)_6600 K (1:36 × 10−4), the plasma structure is similar to the non-uniform structure observed in the experiment. An enthalpy extraction ratio around 2_5% matches well with that in the experiment. At a suitable inlet electron temperature of 7000 K (3:15 × 10−4)_8000 K (1:79 × 10−3), although non-uniform plasma structure still occurs, a high enthalpy extraction ratio over 10% is expected.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号