首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100373篇
  免费   7492篇
  国内免费   2620篇
电工技术   3688篇
技术理论   2篇
综合类   3264篇
化学工业   19222篇
金属工艺   5166篇
机械仪表   6661篇
建筑科学   4869篇
矿业工程   1569篇
能源动力   3535篇
轻工业   7077篇
水利工程   1075篇
石油天然气   3077篇
武器工业   418篇
无线电   13993篇
一般工业技术   17071篇
冶金工业   6651篇
原子能技术   1220篇
自动化技术   11927篇
  2024年   341篇
  2023年   1552篇
  2022年   2611篇
  2021年   3923篇
  2020年   2837篇
  2019年   2787篇
  2018年   3109篇
  2017年   3166篇
  2016年   3357篇
  2015年   3403篇
  2014年   4676篇
  2013年   6129篇
  2012年   6398篇
  2011年   7422篇
  2010年   5699篇
  2009年   5694篇
  2008年   5579篇
  2007年   4783篇
  2006年   4720篇
  2005年   3813篇
  2004年   3168篇
  2003年   3098篇
  2002年   2939篇
  2001年   2536篇
  2000年   2197篇
  1999年   2133篇
  1998年   2512篇
  1997年   1815篇
  1996年   1551篇
  1995年   1166篇
  1994年   935篇
  1993年   739篇
  1992年   557篇
  1991年   523篇
  1990年   450篇
  1989年   416篇
  1988年   319篇
  1987年   266篇
  1986年   188篇
  1985年   173篇
  1984年   134篇
  1983年   102篇
  1982年   69篇
  1981年   66篇
  1980年   58篇
  1979年   51篇
  1978年   46篇
  1977年   43篇
  1976年   74篇
  1973年   33篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
The electrochemical reduction of carbon dioxide (CO2) to hydrocarbons is a challenging task because of the issues in controlling the efficiency and selectivity of the products. Among the various transition metals, copper has attracted attention as it yields more reduced and C2 products even while using mononuclear copper center as catalysts. In addition, it is found that reversible formation of copper nanoparticle acts as the real catalytically active site for the conversion of CO2 to reduced products. Here, it is demonstrated that the dinuclear molecular copper complex immobilized over graphitized mesoporous carbon can act as catalysts for the conversion of CO2 to hydrocarbons (methane and ethylene) up to 60%. Interestingly, high selectivity toward C2 product (40% faradaic efficiency) is achieved by a molecular complex based hybrid material from CO2 in 0.1 m KCl. In addition, the role of local pH, porous structure, and carbon support in limiting the mass transport to achieve the highly reduced products is demonstrated. Although the spectroscopic analysis of the catalysts exhibits molecular nature of the complex after 2 h bulk electrolysis, morphological study reveals that the newly generated copper cluster is the real active site during the catalytic reactions.  相似文献   
102.
The vast chemical and structural tunability of metal–organic frameworks (MOFs) are beginning to be harnessed as functional supports for catalytic nanoparticles spanning a range of applications. However, a lack of straightforward methods for producing nanoparticle-encapsulated MOFs as efficient heterogeneous catalysts limits their usage. Herein, a mixed-metal MOF, NiMg-MOF-74, is utilized as a template to disperse small Ni nanoclusters throughout the parent MOF. By exploiting the difference in Ni O and Mg O coordination bond strength, Ni2+ is selectively reduced to form highly dispersed Ni nanoclusters constrained by the parent MOF pore diameter, while Mg2+ remains coordinated in the framework. By varying the ratio of Ni to Mg in the parent MOF, accessible surface area and crystallinity can be tuned upon thermal treatment, influencing CO2 adsorption capacity and hydrogenation selectivity. The resulting Ni nanoclusters prove to be an active catalyst for CO2 methanation and are examined using extended X-ray absorption fine structure and X-ray photoelectron spectroscopy. By preserving a segment of the Mg2+-containing MOF framework, the composite system retains a portion of its CO2 adsorption capacity while continuing to deliver catalytic activity. The approach is thus critical for designing materials that can bridge the gap between carbon capture and CO2 utilization.  相似文献   
103.
Food Science and Biotechnology - Hardy kiwifruits (Actinidia arguta) contain various bioactive compounds such as vitamin C and phenolics and can withstand cold temperatures. Changes in soluble...  相似文献   
104.
Han  Jing  Xie  Lun  Liu  Jing  Li  Xue 《Multimedia Tools and Applications》2020,79(23-24):16627-16644
Multimedia Tools and Applications - Understanding human emotions through facial expressions is key enabling technology for interactive robots. Most approaches of facial expression recognition are...  相似文献   
105.
针对新桥煤矿2301综采工作面机载喷雾系统喷雾效果差、喷雾耗水量大造成煤质含水量超标、喷嘴雾化程度不高、喷嘴容易发生堵塞等问题,提出了高压喷雾系统设计方案,选择了1.2mm的锥形引射喷嘴和1.5mm的扇形引射喷嘴。采用固定水泵供水方式,结合工作面实际情况,计算出喷雾总用水量247.5L/min,提高了喷雾射程,提升了除尘效果。  相似文献   
106.
Here, we report a facile approach to electrostatically couple the surface charges of graphite nanoplate (GNP) fillers and poly(methyl methacrylate) (PMMA) polymer particles using ethylene maleic anhydride (EMA) copolymer as an electrostatic coupling agent. Our strategy involved switching the intrinsic repulsive electrostatic interactions between the directly exfoliated GNPs fillers and the PMMA particles to attractive electrostatic surface interactions for preparing core(PMMA)-shell (GNP) precursor in order to optimizing 3-dimensionally dispersed polymer nanocomposite. As a result, the electrical conductivity of the composites dramatically increased by a factor of 16.7 in the EMA-coupled GNP/PMMA composites compared with that of the EMA-free GNP/PMMA composites. In addition, the percolation threshold was also notably reduced from 0.32 to 0.159 vol% after electrostatic coupling of the GNPs fillers and PMMA particles. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48390.  相似文献   
107.
In this paper, polyborosilazane precursor was synthesied from HMDZ, HSiCl3, BCl3 and CH3NH2 using a multistep method. By controlling the storage conditions, parts of the polyborosilazane fibers were hydrolyzed. FT-IR, NMR, XRD, TEM and monofilament tensile strength test were employed to study the effects of hydrolysis of precursor on the structures and properties of polymer-derived SiBN ceramic fibers. FT-IR and NMR results indicate that Si-N group in PBSZ reacts with H2O to form Si-O-Si group. After pyrolysis reaction at 1400℃, Si-O-Si group will finally transformed into highly ordered cristobalite and β-quartz, resulting in formation of the wrinkled surface of the obtained SiBN ceramic fiber. The strip-like defects on fiber surface, according to monofilament tensile strength test, had a significant effect on mechanical property of the obtained SiBN ceramic fiber and caused no increase in fiber tensile strength of hydrolytic polyborosilazane fiber before and after pyrolytic process.  相似文献   
108.
The molecular design of short peptides to achieve a tailor-made functional architecture has attracted attention during the past decade but remains challenging as a result of insufficient understanding of the relationship between peptide sequence and assembled supramolecular structures. We report a hybrid-resolution model to computationally explore the sequence–structure relationship of self-assembly for tripeptides containing only phenylalanine and isoleucine. We found that all these tripeptides have a tendency to assemble into nanofibers composed of laterally associated filaments. Molecular arrangements within the assemblies are diverse and vary depending on the sequences. This structural diversity originates from (1) distinct conformations of peptide building blocks that lead to different surface geometries of the filaments and (2) unique sidechain arrangements at the filament interfaces for each sequence. Many conformations are available for tripeptides in solution, but only an extended β-strand and another resembling a right-handed turn are observed in assemblies. It was found that the sequence dependence of these conformations and the packing of resulting filaments are determined by multiple competing noncovalent forces, with hydrophobic interactions involving Phe being particularly important. The sequence pattern for each type of assembly conformation and packing has been identified. These results highlight the importance of the interplay between conformation, molecular packing, and sequences for determining detailed nanostructures of peptides and provide a detailed insight to support a more precise design of peptide-based nanomaterials.  相似文献   
109.
In this work, we report the tuning effect of the Si substitution on the magnetic and high frequency electromagnetic properties of R2Fe17 compounds and their paraffin composites. It is found that the introduction of Si can remarkably improve the magnetic and electromagnetic properties of the R2Fe17 compounds, making the R2Fe17–xSix-paraffin composites excellent microwave absorption materials (MAMs). By introducing the Si element, their saturation magnetizations decrease slightly, while much higher Curie temperatures are obtained. Furthermore, better impedance match is reached due to the decrease of the high-frequency permittivity ε′ by about 40%–50%, which finally enhances the performance of the microwave absorption. The peak frequency (fRL) of the reflection loss (RL) curve moves toward high frequency domain and the qualified bandwidth (QB, RL ≤ ?10 dB) increases remarkably. The maximum QB of 3.3 GHz (12.0–15.3 GHz) is obtained for the Sm1.5Y0.5Fe15Si2-paraffin composite (d = 1.0 mm) and the maximum RL of ?53.6 dB is achieved for Nd2Fe15Si2-paraffin composite (d = 2.2 mm), both surpassing most of the reported MAMs. Additionally, a distinguished dielectric microwave absorption peak is observed, which further increases the QB in these composites.  相似文献   
110.
Metals and Materials International - This study investigated the influence of the initial grain size on the plastic deformation and tunnel defects that occurred from friction stir welding of...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号