全文获取类型
收费全文 | 45222篇 |
免费 | 4016篇 |
国内免费 | 2098篇 |
专业分类
电工技术 | 2569篇 |
技术理论 | 2篇 |
综合类 | 2558篇 |
化学工业 | 7865篇 |
金属工艺 | 2718篇 |
机械仪表 | 2991篇 |
建筑科学 | 3089篇 |
矿业工程 | 1332篇 |
能源动力 | 1291篇 |
轻工业 | 2901篇 |
水利工程 | 683篇 |
石油天然气 | 2622篇 |
武器工业 | 349篇 |
无线电 | 5481篇 |
一般工业技术 | 6097篇 |
冶金工业 | 2571篇 |
原子能技术 | 495篇 |
自动化技术 | 5722篇 |
出版年
2024年 | 250篇 |
2023年 | 889篇 |
2022年 | 1539篇 |
2021年 | 2213篇 |
2020年 | 1604篇 |
2019年 | 1486篇 |
2018年 | 1543篇 |
2017年 | 1572篇 |
2016年 | 1483篇 |
2015年 | 1935篇 |
2014年 | 2298篇 |
2013年 | 2755篇 |
2012年 | 2838篇 |
2011年 | 3218篇 |
2010年 | 2526篇 |
2009年 | 2496篇 |
2008年 | 2524篇 |
2007年 | 2243篇 |
2006年 | 2360篇 |
2005年 | 1884篇 |
2004年 | 1377篇 |
2003年 | 1227篇 |
2002年 | 1151篇 |
2001年 | 1009篇 |
2000年 | 1002篇 |
1999年 | 1046篇 |
1998年 | 878篇 |
1997年 | 741篇 |
1996年 | 656篇 |
1995年 | 539篇 |
1994年 | 426篇 |
1993年 | 289篇 |
1992年 | 232篇 |
1991年 | 212篇 |
1990年 | 169篇 |
1989年 | 157篇 |
1988年 | 102篇 |
1987年 | 89篇 |
1986年 | 59篇 |
1985年 | 52篇 |
1984年 | 39篇 |
1983年 | 37篇 |
1982年 | 31篇 |
1981年 | 23篇 |
1980年 | 26篇 |
1979年 | 18篇 |
1978年 | 15篇 |
1976年 | 18篇 |
1975年 | 10篇 |
1973年 | 13篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
利用扫描电子显微镜(SEM)、原子力显微镜(AFM),研究流沙湾海水珍珠珍珠质层和棱柱层的微尺度生长结构,采用傅里叶变换红外光谱仪(FTIR)对珍珠质层及棱柱层的成分组成进行分析.结果表明:构成海水珍珠珍珠层的珍珠质层,棱柱层和过渡层的微结构和组成是有所不同的,珍珠质层主要为文石型碳酸钙,纳米文石微晶颗粒与有机质颗粒交织形成文石板片,棱柱层中存在方解石和文石两种晶型的碳酸钙,过渡层是由有机质和少量的碳酸钙共同组成;通过对珍珠层结构和成分的研究,初步推断出其生长模式分三个阶段:(1)珠母贝从海水环境中富集钙离子,并分泌有机质诱导碳酸钙成核结晶,二者共同生长形成棱柱层;(2)棱柱层生长到一定阶段,晶体生长的同时珠母贝分泌的有机质发生变化形成一层有机质过渡层,调控碳酸钙的生长;(3)在有机质层上初始成核的纳米文石微晶颗粒与有机质颗粒交织堆砌生长,形成文石板片,文石板片层层堆叠形成结构致密排列有序的珍珠质层. 相似文献
993.
994.
995.
Lu Han Menghao Wang Lizbeth Ofelia Prieto‐Lpez Xu Deng Jiaxi Cui 《Advanced functional materials》2020,30(7)
Adhesive hydrogels are widely applied for biological and medical purposes; however, they are generally unable to adhere to tissues under wet/underwater conditions. Herein, described is a class of novel dynamic hydrogels that shows repeatable and long‐term stable underwater adhesion to various substrates including wet biological tissues. The hydrogels have Fe3+‐induced hydrophobic surfaces, which are dynamic and can undergo a self‐hydrophobization process to achieve strong underwater adhesion to a diverse range of dried/wet substrates without the need for additional processes or reagents. It is also demonstrated that the hydrogels can directly adhere to biological tissues in the presence of under sweat, blood, or body fluid exposure, and that the adhesion is compatible with in vivo dynamic movements. This study provides a novel strategy for fabricating underwater adhesive hydrogels for many applications, such as soft robots, wearable devices, tissue adhesives, and wound dressings. 相似文献
996.
Transition metal‐based nanoparticles have shown their broad applications in versatile biomedical applications. Although traditional iron‐based nanoparticles have been extensively explored in biomedicine, transition metal manganese (Mn)‐based nanoparticulate systems have emerged as a multifunctional nanoplatform with their intrinsic physiochemical property and biological effect for satisfying the strict biomedical requirements. This comprehensive review focuses on recent progress of Mn‐based functional nanoplatforms in biomedicine with the particular discussion on their elaborate construction, physiochemical property, and theranostic applicability. Several Mn‐based nanosystems are discussed in detail, including solid/hollow MnOx nanoparticles, 2D MnOx nanosheets, MnOx‐silica/mesoporous silica nanoparticles, MnOx‐Fe3O4 nanoparticles, MnOx‐Au, MnOx‐fluorescent nanoparticles, Mn‐based organic composite nanosystem, and some specific/unique Mn‐based nanocomposites. Their versatile biomedical applications include pH/reducing‐responsive T1‐weighted positive magnetic resonance imaging, controlled drug loading/delivery/release, protection of neurological disorder, photothermal hyperthermia, photodynamic therapy, chemodynamic therapy, alleviation of tumor hypoxia, immunotherapy, and some specific synergistic therapies, which are based on their disintegration behavior under the mildly acidic/reducing condition, multiple enzyme‐mimicking activity, catalytic‐triggering Fenton reaction, etc. The biological effects and biocompatibility of these Mn‐based nanosystems are also discussed, accompanied with a discussion on challenges/critical issues and an outlook on the future developments and clinical‐translation potentials of these intriguing Mn‐based functional nanoplatforms. 相似文献
997.
Erpeng Li Enbing Bi Yongzhen Wu Weiwei Zhang Linchang Li Han Chen Liyuan Han He Tian Wei‐Hong Zhu 《Advanced functional materials》2020,30(7)
All organic charge‐transporting layer (CTL)‐featured perovskite solar cells (PSCs) exhibit distinct advantages, but their scaling‐up remains a great challenge because the organic CTLs underneath the perovskite are too thin to achieve large‐area homogeneous layers by spin‐coating, and their hydrophobic nature further hinders the solution‐based fabrication of perovskite layer. Here, an unprecedented anchoring‐based coassembly (ACA) strategy is reported that involves a synergistic coadsorption of a hydrophilic ammonium salt CA‐Br with hole‐transporting triphenylamine derivatives to acquire scalable and wettable organic hole‐extraction monolayers for p–i–n structured PSCs. The ACA route not only enables ultrathin organic CTLs with high uniformity but also eliminates the nonwetting problem to facilitate large‐area perovskite films with 100% coverage. Moreover, incorporation of CA‐Br in the ACA strategy can distinctly guarantee a high quality of electronic connection via the cations' vacancy passivation. Consequently, a high power‐conversion‐efficiency (PCE) of 17.49% is achieved for p–i–n structured PSCs (1.02 cm2), and a module with an aperture area of 36 cm2 shows PCE of 12.67%, one of the best scaling‐up results among all‐organic CTL‐based PSCs. This work demonstrates that the ACA strategy can be a promising route to large‐area uniform interfacial layers as well as scaling‐up of perovskite solar cells. 相似文献
998.
Xin Wang Han Li Hui Li Shuai Lin Wei Ding Xiaoguang Zhu Zhigao Sheng Hai Wang Xuebin Zhu Yuping Sun 《Advanced functional materials》2020,30(15)
2D/2D heterostructures can combine the collective advantages of each 2D material and even show improved properties from synergistic effects. 2D Transition metal carbide Ti3C2 MXene and 2D 1T‐MoS2 have emerged as attractive prototypes in electrochemistry due to their rich properties. Construction of these two 2D materials, as well as investigation about synergistic effects, is absent due to the instability of 1T‐MoS2. Here, 3D interconnected networks of 1T‐MoS2/Ti3C2 MXene heterostructure are constructed by magneto‐hydrothermal synthesis, and the electrochemical storage mechanisms are investigated. Improved extra capacitance is observed due to enlarged ion storage space from a synergistically interplayed effect in 3D interconnected networks. Outstanding rate performance is realized because of ultrafast electron transport originating from Ti3C2 MXene. This work provides an archetype to realize excellent electrochemical properties in 2D/2D heterostructures. 相似文献
999.
Han Zhang Bing Zhang Yiwen Zhang Zeng Xu Haozhong Wu Ping‐An Yin Zhiming Wang Zujin Zhao Dongge Ma Ben Zhong Tang 《Advanced functional materials》2020,30(35)
Actualizing full singlet exciton yield via a reverse intersystem crossing from the high‐lying triplet state to singlet state, namely, “hot exciton” mechanism, holds great potential for high‐performance fluorescent organic light‐emitting diodes (OLEDs). However, incorporating comprehensive insights into the mechanism and effective molecular design strategies still remains challenging. Herein, three blue emitters (CNNPI, 2TriPE‐CNNPI, and 2CzPh‐CNNPI) with a distinct local excited (LE) state and charge‐transfer (CT) state distributions in excited states are designed and synthesized. They show prominent hybridized local and charge‐transfer (HLCT) states and aggregation‐induced emission enhancement properties. The “hot exciton” mechanism based on these emitters reveals that a balanced LE/CT distribution can simultaneously boost photoluminescence efficiency and exciton utilization. In particular, a nearly 100% exciton utilization is achieved in the electroluminescence (EL) process of 2CzPh‐CNNPI. Moreover, employing 2CzPh‐CNNPI as the emitter, emissive dopant, and sensitizing host, respectively, the EL performances of the corresponding nondoped pure‐blue, doped deep‐blue, and HLCT‐sensitized fluorescent OLEDs are among the most efficient OLEDs with a “hot exciton” mechanism to date. These results could shed light on the design principles for “hot exciton” materials and inspire the development of next‐generation high‐performance OLEDs. 相似文献
1000.
Jinwoo Lee Heayoun Sul Yeongju Jung Hyeonseok Kim Seonggeun Han Joonhwa Choi Jaeho Shin Dongkwan Kim Jinwook Jung Sukjoon Hong Seung Hwan Ko 《Advanced functional materials》2020,30(36)
Cephalopods’ extraordinary ability to hide into any background has inspired researchers to reproduce the intriguing ability to readily camouflage in the infrared (IR) and visible spectrum but this still remains as a conundrum. In this study, a multispectral imperceptible skin that enables human skin to actively blend into the background both in the IR‐visible integrated spectrum only by simple temperature control with a flexible bi‐functional device (active cooling and heating) is developed. The thermochromic layer on the outer surface of the device, which produces various colors based on device surface temperature, expands the cloaking range to the visible spectrum (thus visible‐to‐IR) and ultimately completes day‐and‐night stealth platform simply by controlling device temperature. In addition, the scalable pixelization of the device allows localized control of each autonomous pixel, enabling the artificial skin surface to adapt to the background of the sophisticated pattern with higher resolution and eventually heightening the level of imperceptibility. As this proof‐of‐concept can be directly worn and conceals the human skin in multispectral ranges, the work is expected to contribute to the development of next‐generation soft covert military wearables and perhaps a multispectral cloak that belongs to cephalopods or futuristic camouflage gadgets in the movies. 相似文献