首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   470篇
  免费   13篇
电工技术   1篇
综合类   1篇
化学工业   202篇
金属工艺   4篇
机械仪表   8篇
建筑科学   13篇
能源动力   15篇
轻工业   103篇
水利工程   3篇
石油天然气   1篇
无线电   11篇
一般工业技术   58篇
冶金工业   19篇
原子能技术   9篇
自动化技术   35篇
  2023年   4篇
  2022年   16篇
  2021年   22篇
  2020年   9篇
  2019年   8篇
  2018年   7篇
  2017年   10篇
  2016年   8篇
  2015年   7篇
  2014年   10篇
  2013年   30篇
  2012年   26篇
  2011年   27篇
  2010年   18篇
  2009年   22篇
  2008年   32篇
  2007年   29篇
  2006年   29篇
  2005年   24篇
  2004年   29篇
  2003年   22篇
  2002年   22篇
  2001年   9篇
  2000年   6篇
  1999年   6篇
  1998年   11篇
  1997年   4篇
  1996年   6篇
  1995年   4篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   6篇
  1990年   2篇
  1989年   2篇
  1987年   2篇
  1986年   1篇
  1984年   2篇
  1980年   1篇
  1979年   2篇
  1975年   1篇
排序方式: 共有483条查询结果,搜索用时 15 毫秒
61.
62.
Climatic change is recognized as an important factor capable of influencing the structural properties of aquatic ecosystems. Lake ecosystems are particularly sensitive to climate change. Several long time-series studies have shown close coupling between climate, lake thermal properties and individual organism physiology, population abundance, community structure, and food-web structure. Understanding the complex interplay between climate, hydrological variability, and ecosystem structure and functioning is essential to inform water resources risk assessment and fisheries management. The purpose of this paper is to present the current understanding of climate-induced changes on lake ecosystem phenology. We first review the ability of climate to modulate the interactions among lake hydrodynamics, chemical factors, and food-web structure in several north temperate deep lakes (e.g., Lake Washington, Lake Tahoe, Lake Constance, Lake Geneva, Lake Baikal, and Lake Zurich). Our aim is to assess long-term trends in the physical (e.g., temperature, timing of stratification, and duration of ice cover), chemical (e.g., nutrient concentrations), and biological (e.g., timing of the spring bloom, phytoplankton composition, and zooplankton abundance) characteristics of the lakes and to examine the signature of local weather conditions (e.g., air temperature and rainfall) and large-scale climatic variability (e.g., ENSO and PDO) on the lake physics, chemistry and biology. We also conducted modeling experiments to quantify the relative effect of climate change and nutrient loading on lake phenology. These modeling experiments focused on the relative changes to the major causal associations underlying plankton dynamics during the spring bloom and the summer stratified period. To further understand the importance of climate change on lakes, we propose two complementary directions of future research. First, additional research is needed to elucidate the wide array of in-lake processes that are likely to be affected by the climate change. Second, it is essential to examine the heterogeneity in responses among different water bodies. The rationale of this approach and its significance for dealing with the uncertainty that the climate signals cascade through lake ecosystems and shape abiotic variability and/or biotic responses have been recently advocated by several other synthesis papers.  相似文献   
63.
We have isolated three unique NaPi-2-related protein cDNAs (NaPi-2alpha, NaPi-2beta, and NaPi-2gamma) from a rat kidney library. NaPi-2alpha cDNA encodes 337 amino acids which have high homology to the N-terminal half of NaPi-2 containing 3 transmembrane domains. NaPi-2beta encodes 327 amino acids which are identical to the N-terminal region of NaPi-2 containing 4 transmembrane domains, whereas the 146 amino acids in the C-terminal region are completely different. In contrast, NaPi-2gamma encodes 268 amino acids which are identical to the C-terminal half of NaPi-2. An analysis of phage and cosmid clones indicated that the three related proteins were produced by alternative splicing in the NaPi-2 gene. In a rabbit reticulocyte lysate system, NaPi-2 alpha, beta, and gamma were found to be 36, 36, and 29 kDa amino acid polypeptides, respectively. NaPi-2alpha and NaPi-2gamma were glycosylated and revealed to be 45- and 35-kDa proteins, respectively. In isolated brush-border membrane vesicles, an N-terminal antibody was reacted with 45- and 40-kDa, and a C-terminal antibody was reacted with 37-kDa protein. The sizes of these proteins corresponded to those in glycosylated forms. A functional analysis demonstrated that NaPi-2gamma and -2alpha markedly inhibited NaPi-2 activity in Xenopus oocytes. The results suggest that these short isoforms may function as a dominant negative inhibitor of the full-length transporter.  相似文献   
64.
It can be shown that claims of a lack of theories of citation are also indicative of a grate need for a theory which links science dynamics and measurement. There is a wide gap between qualitative (science dynamics) and quantitative (measurement) approaches. To link them, the present study proposes the use of the citation system, that potentially bridges a gap between measurement and epistemology, by applying system theory to the publication system.  相似文献   
65.
We recorded temperature-dependent high-resolution 13C NMR spectra of dry and swollen poly(acrylate)s [poly(2-methoxyethyl acrylate) (PMEA), poly(2-hydroxyethyl methacrylate) (PHEMA), and poly(tetrahydrofurfuryl acrylate) (PTHFA)] by dipolar decoupled-magic angle spinning (DD-MAS) and cross-polarization-magic angle spinning (CP-MAS) methods, to gain insight into their network structures and dynamics. Suppressed or recovered intensities (SRI) analysis of 13C CP-MAS and DD-MAS NMR was successfully utilized, to reveal portions of dry and swollen polymers which undergo fast and slow motions with fluctuation frequencies in the order of 108 Hz and 104-105 Hz, respectively. Fast isotropic motions with frequency higher than 108 Hz at ambient temperature were located to the portions in which 13C CP-MAS NMR signals of swollen PMEA were selectively suppressed. In contrast, low-frequency motion was identified to the portions in which 13C DD-MAS (and CP-MAS) signals are most suppressed at the characteristic suppression temperature(s) Ts. Network of PMEA gels (containing 7 wt% of water) turns out to be formed by partial association of backbones only, as manifested from their Ts gradient at lowered temperature, whereas networks of PHEMA (containing 40 wt% of water) and PTHFA (9 wt% of water) gels are tightly formed through mutual inter-chain associations of both backbones and side-chains, as viewed from the raised Ts values for both near at ambient temperature. It is also interesting to note that flexibility of gel network (PMEA > PTHFA > PHEMA) characterized by the suppression temperature Ts (PMEA < PTHFA < PHEMA) is well related with a characteristic parameter for biocompatibility such as the production of TAT (thrombin-antithrombin III complex) as a marker of activation of the coagulation system.  相似文献   
66.
Enantioselective Friedel–Crafts alkylations of a variety of indoles with ethyl 3,3,3‐trifluoropyruvate catalyzed by novel chiral m‐phenylenebis(imidazoline)‐copper(II) complexes or the bis(imidazoline)‐achiral acid combination afforded products with high enantioselectivity. Both enantiomers of indole derivatives can be prepared with high enantioselectivities by tuning the N‐substituents of the imidazoline.  相似文献   
67.
The effects of the presence of chloride on the formation of 3-monochloro-1,2-propanediol fatty acid esters (3-MCPDEs) and glycidol fatty acid esters (GEs) in saltwater fish, meats and acylglycerols (diacylglycerol and triacylglycerol) during heating were investigated in this study. Five saltwater fish species (salmon, saury, yellowtail, mackerel and Spanish mackerel) were grilled with a fish griller. 3-MCPDEs and GEs were detected in all of the grilled fish samples. The total amount of GEs was higher than 3-MCPDEs. Beef and pork patties with or without sodium chloride (1.5%) were cooked using gaseous fuel. The formation of 3-MCPDEs was significantly increased by the addition of sodium chloride to the meat patties, whereas the concentration of GEs in the cooked meat patties was not changed by the content of sodium chloride. Hexadecane solutions of diacylglycerol or triacylglycerol containing FeCl3 were heated at 240°C. The formation of 3-MCPDEs was greatly increased by adding FeCl3 to the solutions of triacylglycerol. The amounts of 3-MCPDEs decreased with the extension of the heating time. From these results, it is suggested that 3-MCPDEs and GEs are formed in saltwater fish and meats by cooking, and that the formation of 3-MCPDEs was affected by chloride in foodstuffs.  相似文献   
68.
The photosynthetic and anatomical responses of bryophytes to changes in gravity will provide crucial information for estimating how these plant traits evolved to adapt to changes in gravity in land plant history. We performed long-term hypergravity experiments at 10g for 4 and 8 weeks using the moss Physcomitrella patens with two centrifuges equipped with lighting systems that enable long-term plant growth under hypergravity with irradiance. The aims of this study are (1) to quantify changes in the anatomy and morphology of P. patens, and (2) to analyze the post-effects of hypergravity on photosynthesis by P. patens in relation to these changes. We measured photosynthesis by P. patens for a population of gametophores (e.g., canopy) in Petri dishes and plant culture boxes. Gametophore numbers increased by 9% for a canopy of P. patens, with 24–27% increases in chloroplast sizes (diameter and thickness) in leaf cells. In a canopy of P. patens, the area-based photosynthesis rate (A canopy) was increased by 57% at 10g. The increase observed in A canopy was associated with greater plant numbers and chloroplast sizes, both of which involved enhanced CO2 diffusion from the atmosphere to chloroplasts in the canopies of P. patens. These results suggest that changes in gravity are important environmental stimuli to induce changes in plant growth and photosynthesis by P. patens, in which an alteration in chloroplast size is one of the key traits. We are now planning an ISS experiment to investigate the responses of P. patens to microgravity.  相似文献   
69.
The spherulitic morphology in poly(butylene succinate-co-butylene carbonate)/poly(l-lactic acid) (PEC/PLLA) blends was investigated by atomic force microscopy (AFM) to obtain direct evidence for the formation of interpenetrated spherulites (IPS), where the spherulites of PEC penetrate into PLLA spherulites. The observation actually revealed that PEC crystals penetrated into interfibrillar regions of edge-on lamellae in a PLLA spherulite. The penetration process was also investigated by AFM with a temperature controller. An edge-on PLLA lamella or a fibril that ran nearly perpendicular to the growth direction of a PEC spherulite obstructed the growth of PEC spherulite. The PEC crystals filled the blocked space after growing around the PLLA lamella. These results showed that the spherulites of PEC and PLLA grow on the same layer instead of forming a layered structure of two spherulites. All the results supported the formation of IPS.  相似文献   
70.
Summary First and second generation chiral dendrimers P-1G1, P-2G1, P-1G2 and P-2G2 containing chiral bisphosphine as a core were synthesized via a reaction of chiral bisphosphine compound (S,S)-1 with benzyl ether dendrons. This is the first example of chiral dendrimers containing chiral phosphorus atoms. To investigate the effect of chiral phosphorus atoms on their conformations, optically inactive dendrimer P′-2G1 was synthesized as well using optically inactive initiator 1′ which was the mixture of rac-1 ((S,S)-1 and (R,R)-1) and meso-1. Their structures were characterized by 1H, 13C, 31P NMR, and HRMS. According to CD measurement, optically active dendrimers exhibited the Cotton effect induced by the chirality of phosphorus atoms, while optically inactive dendrimer P′-2G1 showed no Cotton effect.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号