首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   322篇
  免费   6篇
电工技术   2篇
化学工业   62篇
金属工艺   10篇
机械仪表   9篇
建筑科学   4篇
矿业工程   1篇
能源动力   5篇
轻工业   3篇
石油天然气   6篇
无线电   30篇
一般工业技术   77篇
冶金工业   90篇
原子能技术   13篇
自动化技术   16篇
  2023年   3篇
  2022年   11篇
  2021年   6篇
  2020年   6篇
  2019年   4篇
  2018年   9篇
  2017年   4篇
  2016年   6篇
  2015年   4篇
  2014年   9篇
  2013年   14篇
  2012年   9篇
  2011年   18篇
  2010年   12篇
  2009年   13篇
  2008年   21篇
  2007年   7篇
  2006年   13篇
  2005年   4篇
  2004年   13篇
  2003年   11篇
  2002年   12篇
  2001年   9篇
  2000年   15篇
  1999年   6篇
  1998年   9篇
  1997年   11篇
  1996年   14篇
  1995年   8篇
  1994年   3篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1990年   4篇
  1987年   3篇
  1983年   2篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   4篇
  1975年   2篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1967年   1篇
  1966年   1篇
  1964年   3篇
  1962年   2篇
排序方式: 共有328条查询结果,搜索用时 15 毫秒
91.
Organic solar cells (OSCs) have made rapid progress in terms of their development as a sustainable energy source. However, record-breaking devices have not shown compatibility with large-scale production via solution processing in particular due to the use of halogenated environment-threatening solvents. Here, slot-die fabrication with processing involving hydrocarbon-based solvents is used to realize highly efficient and environmentally friendly OSCs. Highly compatible slot-die coating with roll-to-roll processing using halogenated (chlorobenzene (CB)) and hydrocarbon solvents (1,2,4-trimethylbenzene (TMB) and ortho-xylene (o-XY)) is used to fabricate photoactive films. Controlled solution and substrate temperatures enable similar aggregation states in the solution and similar kinetics processes during film formation. The optimized blend film nanostructures for different solvents in the highly efficient PM6:Y6 blend is adopted to show a similar morphology, which results in device efficiencies of 15.2%, 15.4%, and 15.6% for CB, TMB, and o-XY solvents. This approach is successfully extended to other donor–acceptor combinations to demonstrate the excellent universality of this method. The results combine a method to optimize the aggregation state and film formation kinetics with the fabrication of OSCs with environmentally friendly solvents by slot-die coating, which is a critical finding for the future development of OSCs in terms of their scalable production and high-performance.  相似文献   
92.
We describe a C++ implementation of the Optimal Jet Definition for identification of jets in hadronic final states of particle collisions. We explain interface subroutines and provide a usage example. The source code is available from http://www.inr.ac.ru/~ftkachov/projects/jets/.

Program summary

Title of program: Optimal Jet Finder (v1.0 C++)Catalogue identifier: ADSB_v2_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADSB_v2_0Program obtainable from: CPC Program Library, Queen's University of Belfast, N. IrelandComputer: any computer with a standard C++ compilerTested with:
(1)
GNU gcc 3.4.2, Linux Fedora Core 3, Intel i686;
(2)
Forte Developer 7 C++ 5.4, SunOS 5.9, UltraSPARC III+;
(3)
Microsoft Visual C++ Toolkit 2003 (compiler 13.10.3077, linker 7.10.30777, option /EHsc), Windows XP, Intel i686.
Programming language used: C++Memory required:∼1 MB (or more, depending on the settings)No. of lines in distributed program, including test data, etc.: 3047No. of bytes in distributed program, including test data, etc.: 17 884Distribution format: tar.gzNature of physical problem: Analysis of hadronic final states in high energy particle collision experiments often involves identification of hadronic jets. A large number of hadrons detected in the calorimeter is reduced to a few jets by means of a jet finding algorithm. The jets are used in further analysis which would be difficult or impossible when applied directly to the hadrons. Grigoriev et al. [D.Yu. Grigoriev, E. Jankowski, F.V. Tkachov, Phys. Rev. Lett. 91 (2003) 061801] provide brief introduction to the subject of jet finding algorithms and a general review of the physics of jets can be found in [R. Barlow, Rep. Prog. Phys. 36 (1993) 1067].Method of solution: The software we provide is an implementation of the so-called Optimal Jet Definition (OJD). The theory of OJD was developed in [F.V. Tkachov, Phys. Rev. Lett. 73 (1994) 2405; Erratum, Phys. Rev. Lett. 74 (1995) 2618; F.V. Tkachov, Int. J. Modern Phys. A 12 (1997) 5411; F.V. Tkachov, Int. J. Modern Phys. A 17 (2002) 2783]. The desired jet configuration is obtained as the one that minimizes Ω, a certain function of the input particles and jet configuration. A FORTRAN 77 implementation of OJD is described in [D.Yu. Grigoriev, E. Jankowski, F.V. Tkachov, Comput. Phys. Comm. 155 (2003) 42].Restrictions on the complexity of the program: Memory required by the program is proportional to the number of particles in the input × the number of jets in the output. For example, for 650 particles and 20 jets ∼300 KB memory is required.Typical running time: The running time (in the running mode with a fixed number of jets) is proportional to the number of particles in the input × the number of jets in the output × times the number of different random initial configurations tried (ntries). For example, for 65 particles in the input and 4 jets in the output, the running time is ∼4⋅10−3 s per try (Pentium 4 2.8 GHz).  相似文献   
93.
An explosive eruption occurred at Bezymianny Volcano (Kamchatka Peninsula, Russia) on 24 December 2006 at 09:17 (UTC). Seismicity increased three weeks prior to the large eruption, which produced a 12–15 km above sea level (ASL) ash column. We present field observations from 27 December 2006 and 2 March 2007, combined with satellite data collected from 8 October 2006 to 11 April 2007 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), as part of the instrument's rapid-response program to volcanic eruptions. Pixel-integrated brightness temperatures were calculated from both ASTER 90 m/pixel thermal infrared (TIR) data as well as 30 m/pixel short-wave infrared (SWIR) data. Four days prior to the eruption, the maximum TIR temperature was 45 °C above the average background temperature (− 33 °C) at the dome, which we interpret was a precursory signal, and had dropped to 8 °C above background by 18 March 2007. On 20 December 2006, there was also a clear thermal signal in the SWIR data of 128 °C using ASTER Band 7 (2.26 μm). The maximum SWIR temperature was 181 °C on the lava dome on 4 January 2007, decreasing below the detection limit of the SWIR data by 11 April 2007. On 4 January 2007 a hot linear feature was observed at the dome in the SWIR data, which produced a maximum temperature of 700 °C for the hot fraction of the pixel using the dual band technique. This suggests that magmatic temperatures were present at the dome at this time, consistent with the emplacement of a new lava lobe following the eruption. The eruption also produced a large, 6.5 km long by up to 425 m wide pyroclastic flow (PF) deposit that was channelled into a valley to the south–southeast. The PF deposit cooled over the following three months but remained elevated above the average background temperature. A second field investigation in March 2007 revealed a still-warm PF deposit that contained fumaroles. It was also observed that the upper dome morphology had changed in the past year, with a new lava lobe having in-filled the crater that formed following the 9 May 2006 eruption. These data provide further information on effusive and explosive activity at Bezymianny using quantitative remote sensing data and reinforced by field observations to assist in pre-eruption detection as well as post-eruption monitoring.  相似文献   
94.
Kinetics of the thermal decomposition of dinitramide (HDN) in aqueous solutions and of NH4N(NO2)2 (ADN) and KN(NO2)2 (KDN) in sulfuric acid, nitric acid and anhydrous acetic acid solutions was studied. The species N(NO2)−2, HN(NO2)2 and H2N(NO2) were established to take part in the decomposition over a wide range of the medium acidity. Kinetic regularities of their thermal decomposition were determined. The role of the decomposition of dinitramide at the initial and self-acceleration stages of the decomposition of ADN was determined. The most likely mechanism of the decomposition of dinitramide, N(NO2)−2 and H2N(NO2)+2 was proposed.  相似文献   
95.
96.
The combustion process of heterogeneous condensed systems (HCS) is a complex phenomenon characterized by some peculiarities: Phase transitions in the combustion wave, time and space inhomogeneity of the temperature and burning rate, agglomeration and dispersion of the condensed phase, concentration limits, etc. The order and completeness of chemical reactions in a HCS combustion wave depend not only on the energetic parameters but on the composite structure as well (porosity, component particle size and shape, etc.). Some phenomenological aspects of the HCS combustion process are analyzed. Peculiarities of metal particle agglomeration and its influence on the metal oxide size are discussed. The high‐temperature kinetics of Al+Al2O3 interaction are shown. The complexity of the analyzed phenomenon calls for a non‐traditional approach and technique.  相似文献   
97.
Nanotechnology is a fast-growing area, involving the fabrication and use of nano-sized materials and devices. Various nanocomposite materials play a number of important roles in modern science and technology. Magnetic and fluorescent inorganic nanoparticles are of particular importance due to their broad range of potential applications. It is expected that the combination of magnetic and fluorescent properties in one nanocomposite would enable the engineering of unique multifunctional nanoscale devices, which could be manipulated using external magnetic fields. The aim of this review is to present an overview of bimodal “two-in-one” magnetic-fluorescent nanocomposite materials which combine both magnetic and fluorescent properties in one entity, in particular those with potential applications in biotechnology and nanomedicine. There is a great necessity for the development of these multifunctional nanocomposites, but there are some difficulties and challenges to overcome in their fabrication such as quenching of the fluorescent entity by the magnetic core. Fluorescent-magnetic nanocomposites include a variety of materials including silica-based, dye-functionalised magnetic nanoparticles and quantum dots-magnetic nanoparticle composites. The classification and main synthesis strategies, along with approaches for the fabrication of fluorescent-magnetic nanocomposites, are considered. The current and potential biomedical uses, including biological imaging, cell tracking, magnetic bioseparation, nanomedicine and bio- and chemo-sensoring, of magnetic-fluorescent nanocomposites are also discussed.  相似文献   
98.
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号