首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   973篇
  免费   57篇
  国内免费   2篇
电工技术   37篇
综合类   2篇
化学工业   328篇
金属工艺   23篇
机械仪表   29篇
建筑科学   19篇
矿业工程   1篇
能源动力   39篇
轻工业   53篇
石油天然气   2篇
无线电   55篇
一般工业技术   263篇
冶金工业   26篇
原子能技术   25篇
自动化技术   130篇
  2024年   3篇
  2023年   23篇
  2022年   31篇
  2021年   59篇
  2020年   26篇
  2019年   34篇
  2018年   30篇
  2017年   44篇
  2016年   43篇
  2015年   33篇
  2014年   52篇
  2013年   86篇
  2012年   65篇
  2011年   76篇
  2010年   78篇
  2009年   74篇
  2008年   51篇
  2007年   37篇
  2006年   42篇
  2005年   25篇
  2004年   10篇
  2003年   13篇
  2002年   9篇
  2001年   7篇
  2000年   7篇
  1999年   7篇
  1998年   3篇
  1997年   6篇
  1996年   5篇
  1995年   5篇
  1994年   4篇
  1993年   5篇
  1992年   2篇
  1991年   6篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1986年   1篇
  1985年   7篇
  1984年   5篇
  1983年   2篇
  1982年   4篇
  1981年   3篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
排序方式: 共有1032条查询结果,搜索用时 15 毫秒
11.
Microporous carbons have been synthesized by the carbonization of cationic surfactant-resorcinol/formaldehyde (RF) composites, which were themselves formed by electrostatic organic-organic interaction. The porous structure produced by the decomposition of the surfactant plays an important role for the gasification of the RF polymer at higher temperatures. The pore size of the carbon prepared from tetrapropylammonium bromide (TPAB)-RF, cetyltrimethylammonium bromide (C16TAB)-RF and decyltrimethylammonium bromide (C10TAB)-RF mixtures can be estimated as 0.53 nm from the Horvath-Kawazoe method using N2 adsorption isotherms. Their pore size distributions were very narrow, showing that the microporous carbons derived from surfactant-RF mixture may have promise as adsorbents and membrane materials.  相似文献   
12.
Two types of organic–inorganic hybrid base catalysts are prepared. Organic-functionalized molecular sieves (OFMSs), particularly “amine-immobilized porous silicates”, are designed based on common idea to immobilize catalytic active sites on silicate surface. Silicate–organic composite materials (SOCMs), such as “ordered porous silicate–quaternary ammonium composite materials”, are the precursors of ordered porous silicates obtained during the synthesis. Both the OFMS and the SOCM are used as the catalysts for Knoevenagel condensation. Among the OFMSs, there is clear tendency that the use of molecular sieve with larger pore volume and/or surface area gives the product in higher yield. Aminopropylsilyl (AP)-functionalized mesoporous silicates such as AP-MCM-41 gives the product in high yield under mild conditions. No loss of activity is observed after repeated use for three times. The SOCMs are also active for the same reaction. The precursors of the mesoporous silicates are more active than those of microporous silicates. This material can be repeatedly used without significant loss of activity. High activity is not due to the leached species. The active sites of the SOCM catalysts are considered to be SiO moieties located on the pore-mouth. Activity of the SOCM increases when the reaction is carried out without solvent, whereas decrease in activity of the OFMS is observed in the solvent-free system.  相似文献   
13.
An organic aqueous solution of metal acetylacetonate precursors was subjected to spray pyrolysis in order to fabricate SrAl2O4:Eu (SAO) nanoparticles. Non-agglomerated luminescent SAO nanoparticles, having a spherical shape with a size of 10–30 nm, were achieved in a single step, while only submicrometer-sized SAO particles were obtained from the conventional ultrasonic pyrolysis of the metal nitrates. Without any post-annealing process, the as-prepared SAO nanoparticles were observed to exhibit a strong photoluminescence, which is comparable with that of the submicrometer-sized SAO particles. A mechanism for the formation of the nanoparticles is also discussed.  相似文献   
14.
Electro-rheological (ER) effect of a blend composed of two liquid crystalline materials with different molecular weights is described in this article. The results indicated that ER effect of the blend was observed at the temperature range where each neat sample did not show ER effect. Furthermore, both storage modulus (G′) and loss modulus (G″) decreased drastically at the temperature range for the blend in dynamic viscoelastic measurements. We show that steady ER effect could be obtained by using a blend made up of two liquid crystalline components, whereas remarkable increment in shear stress was not observed for each component under applied electric field.  相似文献   
15.
Type-A zeolite evenly covered with hydroxyapatite thin layers was prepared using hydrothermal treatment at 120°C for 8 h under autogenous pressure. The hydroxyapatite needlelike nanocrystals, 100–200 nm in diameter and 30 nm in thickness, were grown under the reaction between discharged Ca2+ ions from type-A zeolite and PO43− ions in (NH4)3PO4 solution. The preferential orientations of the c -axis of hydroxyapatite crystals perpendicular to a zeolite surface were observed using transmission electron microscopy. The crystal structure of type-A zeolite was not destroyed under the reaction, but the surface morphology was changed only with complete covering of scaly hydroxyapatite particles.  相似文献   
16.
Ca x Ba1−x TiO3 (CBT) fine particles doped with red luminescence center of Pr3+ ions (Pr: CBT) were successfully synthesized by salt assisted spray pyrolysis (SASP) process. Scanning electronic microscope (SEM) and laser scattering analysis demonstrate that salt can be removed from the surface of particles by washing with Milli-Q water and the particles can be further separated by ball-milling to get well-dispersed Pr3+ ions doped CBT fine particles. The luminescence properties, such as photoluminescence (PL) and mechanoluminescence (ML), of as-synthesized Pr: CBT particles were investigated. For Pr: CBT fine particles with different Ca molar ratios, all the samples show one emission at 612 nm, with increasing Ca molar ratio, PL intensity of Pr: CBT fine particles become stronger and stronger. When pressure was loaded on the Pr: CBT pellet, mechanoluminescence(ML) emission was measured. The results show that the ML intensity is proportional to the applied pressure.  相似文献   
17.
In the shearing process, clearance has a significant effect on machining accuracy. However, the relationship between uneven clearance caused by misalignment of tool position and machining accuracy remains unclear. This is attributed to the fact that, previously, the effect was small because the thickness of the workpiece was not so thin, and a method for precisely measuring and adjusting the tool position had not been established. Therefore, in the present study, a new method of adjusting the initial tool position is developed. In addition, punching experiments are conducted under the condition that the initial tool position is adjusted to an accuracy of 2 μm or better, and the effects of clearance on machining accuracy, shape of cross-section, and diameter of hole, are investigated in three types of materials. From these results, the importance of adjusting the initial tool position is clarified.  相似文献   
18.
19.
This work reports the template‐free fabrication of mesoporous Al2O3 nanospheres with greatly enhanced textural characteristics through a newly developed post‐synthesis “water‐ethanol” treatment of aluminium glycerate nanospheres followed by high temperature calcination. The proposed “water‐ethanol” treatment is highly advantageous as the resulting mesoporous Al2O3 nanospheres exhibit 2–4 times higher surface area (up to 251 m2 g?1), narrower pore size distribution, and significantly lower crystallization temperature than those obtained without any post‐synthesis treatment. To demonstrate the generality of the proposed strategy, a nearly identical post‐synthesis “water treatment” method is successfully used to prepare mesoporous monometallic (e.g., manganese oxide (MnO2)) and bimetallic oxide (e.g., CuCo2O4 and MnCo2O4) nanospheres assembled of nanosheets or nanoplates with highly enhanced textural characteristics from the corresponding monometallic and bimetallic glycerate nanospheres, respectively. When evaluated as molybdenum (Mo) adsorbents for potential use in molybdenum‐99/technetium‐99m (99Mo/99mTc) generators, the treated mesoporous Al2O3 nanospheres display higher molybdenum adsorption performance than non‐treated Al2O3 nanospheres and commercial Al2O3, thereby suggesting the effectiveness of the proposed strategy for improving the functional performance of oxide materials. It is expected that the proposed method can be utilized to prepare other mesoporous metal oxides with enhanced textural characteristics and functional performance.  相似文献   
20.
Compute unified device architecture (CUDA) is a software development platform that allows us to run C-like programs on the nVIDIA graphics processing unit (GPU). This paper presents an acceleration method for cone beam reconstruction using CUDA compatible GPUs. The proposed method accelerates the Feldkamp, Davis, and Kress (FDK) algorithm using three techniques: (1) off-chip memory access reduction for saving the memory bandwidth; (2) loop unrolling for hiding the memory latency; and (3) multithreading for exploiting multiple GPUs. We describe how these techniques can be incorporated into the reconstruction code. We also show an analytical model to understand the reconstruction performance on multi-GPU environments. Experimental results show that the proposed method runs at 83% of the theoretical memory bandwidth, achieving a throughput of 64.3 projections per second (pps) for reconstruction of 5123-voxel volume from 360 5122-pixel projections. This performance is 41% higher than the previous CUDA-based method and is 24 times faster than a CPU-based method optimized by vector intrinsics. Some detailed analyses are also presented to understand how effectively the acceleration techniques increase the reconstruction performance of a naive method. We also demonstrate out-of-core reconstruction for large-scale datasets, up to 10243-voxel volume.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号