首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   999篇
  免费   52篇
  国内免费   2篇
电工技术   35篇
综合类   2篇
化学工业   348篇
金属工艺   28篇
机械仪表   30篇
建筑科学   18篇
矿业工程   1篇
能源动力   39篇
轻工业   55篇
水利工程   1篇
石油天然气   2篇
无线电   49篇
一般工业技术   269篇
冶金工业   21篇
原子能技术   23篇
自动化技术   132篇
  2024年   3篇
  2023年   23篇
  2022年   31篇
  2021年   61篇
  2020年   26篇
  2019年   34篇
  2018年   29篇
  2017年   46篇
  2016年   42篇
  2015年   32篇
  2014年   51篇
  2013年   84篇
  2012年   68篇
  2011年   78篇
  2010年   80篇
  2009年   72篇
  2008年   52篇
  2007年   40篇
  2006年   45篇
  2005年   26篇
  2004年   11篇
  2003年   14篇
  2002年   10篇
  2001年   14篇
  2000年   8篇
  1999年   11篇
  1998年   5篇
  1997年   6篇
  1996年   7篇
  1995年   4篇
  1994年   4篇
  1993年   6篇
  1992年   2篇
  1991年   5篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   4篇
  1984年   2篇
  1983年   2篇
  1982年   4篇
  1981年   2篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有1053条查询结果,搜索用时 15 毫秒
41.
Fatty acid esters of hydroxy fatty acids (FAHFAs) are a new class of endogenous lipids with interesting physiological functions in mammals. Despite their structural diversity and links with nuclear factor erythroid 2-related factor 2 (NRF2) biosynthesis, FAHFAs are less explored as NRF2 activators. Herein, we examined for the first time the synthetic docosahexaenoic acid esters of 12-hydroxy stearic acid (12-DHAHSA) or oleic acid (12-DHAHOA) against NRF2 activation in cultured human hepatoma-derived cells (C3A). The effect of DHA-derived FAHFAs on lipid metabolism was explored by the nontargeted lipidomic analysis using liquid chromatography-mass spectrometry. Furthermore, their action on lipid droplet (LD) oxidation was investigated by the fluorescence imaging technique. The DHA-derived FAHFAs showed less cytotoxicity compared to their native fatty acids and activated the NRF2 in a dose-dependent pattern. Treatment of 12-DHAHOA with C3A cells upregulated the cellular triacylglycerol levels by 17-fold compared to the untreated group. Fluorescence imaging analysis also revealed the suppression of the degree of LDs oxidation upon treatment with 12-DHAHSA. Overall, these results suggest that DHA-derived FAHFAs as novel and potent activators of NRF2 with plausible antioxidant function.  相似文献   
42.
Accumulating evidence has demonstrated that the pathogenesis of epilepsy is linked to neuroinflammation and cerebrovascular dysfunction. Peripheral immune cell invasion into the brain, along with these responses, is implicitly involved in epilepsy. This review explored the current literature on the association between the peripheral and central nervous systems in the pathogenesis of epilepsy, and highlights novel research directions for therapeutic interventions targeting these reactions. Previous experimental and human studies have demonstrated the activation of the innate and adaptive immune responses in the brain. The time required for monocytes (responsible for innate immunity) and T cells (involved in acquired immunity) to invade the central nervous system after a seizure varies. Moreover, the time between the leakage associated with blood–brain barrier (BBB) failure and the infiltration of these cells varies. This suggests that cell infiltration is not merely a secondary disruptive event associated with BBB failure, but also a non-disruptive event facilitated by various mediators produced by the neurovascular unit consisting of neurons, perivascular astrocytes, microglia, pericytes, and endothelial cells. Moreover, genetic manipulation has enabled the differentiation between peripheral monocytes and resident microglia, which was previously considered difficult. Thus, the evidence suggests that peripheral monocytes may contribute to the pathogenesis of seizures.  相似文献   
43.
Poly[vinylidenefluoride‐co‐(tetrafluoroethylene)] (P(VDF‐TeFE)) exhibited clear spherulitic texture with negative birefringence. The number and growth rates of the spherulites decreased at high crystallization temperature than at low crystallization temperature. Nonetheless, overall larger spherulites were found at high crystallization temperature and the brightness of the spherulites increased very fast at low crystallization temperature, thereafter it seemed as diminution of birefringence. AFM was used to investigate the impact of organo modified nanodiamond(ND) on spherulitic textures, lamellar thickness, and thickness distribution of P(VDF‐TeFE) copolymer. Poly[ethylene‐co‐(tetrafluoroethylene)] (ETFE) also confirmed spherulites structure and the boundaries could be clearly observed. By incorporation of the organo modified nanodiamond (ND) and organo‐modified montmorillonite (MMT) in fluropolymer matrix, it was found that spherulitic texture was seriously disordered and their nanohybrids was found only to have poorly developed spherulite structure. Both of the nanohybrids samples show better crystallization temperature as compared to their neat copolymer samples. Furthermore, the incorporation of nanoparticles decreased the size of the spherulites. POLYM. ENG. SCI., 57:161–171, 2017. © 2016 Society of Plastics Engineers  相似文献   
44.
To achieve a high-efficiency silicon nanowire (SiNW) solar cell, surface passivation technique is very important because a SiNW array has a large surface area. We successfully prepared by atomic layer deposition (ALD) high-quality aluminum oxide (Al2O3) film for passivation on the whole surface of the SiNW arrays. The minority carrier lifetime of the Al2O3-depositedSiNW arrays with bulk silicon substrate was improved to 27 μs at the optimum annealing condition. To remove the effect of bulk silicon, the effective diffusion length of minority carriers in the SiNW array was estimated by simple equations and a device simulator. As a result, it was revealed that the effective diffusion length in the SiNW arrays increased from 3.25 to 13.5 μm by depositing Al2O3 and post-annealing at 400°C. This improvement of the diffusion length is very important for application to solar cells, and Al2O3 deposited by ALD is a promising passivation material for a structure with high aspect ratio such as SiNW arrays.  相似文献   
45.
This paper discusses the positive-temperature-coefficient effects of resistivity in Ni particle-dispersed poly(vinylidene fluoride) (PVDF) composites based on experiment results from SEM, DSC, and pressure-volume-temperature (PVT) measurements. The melting points of composites with Ni content of 20, 30, 40, and 50vol.% were equal to that of pure PVDF. The PTC effects in composites with Ni content of 40 and 50vol.% occurred at temperatures near the melting point of the PVDF matrix, whereas those in composites with Ni content of 20 and 30vol.% occurred at temperatures below the melting point of the PVDF matrix. We found that the PTC effect occurs even without melting of the matrix polymer. Moreover, we determined that a slight increase in specific volume at temperatures below the melting point of the matrix polymer acts fully as a driving force for forming a gap between fillers. This suggestion was backed up by theoretical analyses using percolation theory and a thermal-fluctuation-induced tunneling model.  相似文献   
46.
Two types of organic–inorganic hybrid base catalysts are prepared. Organic-functionalized molecular sieves (OFMSs), particularly “amine-immobilized porous silicates”, are designed based on common idea to immobilize catalytic active sites on silicate surface. Silicate–organic composite materials (SOCMs), such as “ordered porous silicate–quaternary ammonium composite materials”, are the precursors of ordered porous silicates obtained during the synthesis. Both the OFMS and the SOCM are used as the catalysts for Knoevenagel condensation. Among the OFMSs, there is clear tendency that the use of molecular sieve with larger pore volume and/or surface area gives the product in higher yield. Aminopropylsilyl (AP)-functionalized mesoporous silicates such as AP-MCM-41 gives the product in high yield under mild conditions. No loss of activity is observed after repeated use for three times. The SOCMs are also active for the same reaction. The precursors of the mesoporous silicates are more active than those of microporous silicates. This material can be repeatedly used without significant loss of activity. High activity is not due to the leached species. The active sites of the SOCM catalysts are considered to be SiO moieties located on the pore-mouth. Activity of the SOCM increases when the reaction is carried out without solvent, whereas decrease in activity of the OFMS is observed in the solvent-free system.  相似文献   
47.
A methodology for realizing a higher‐power‐density DC‐DC converter has been proposed for a power unit installed in a 380‐V DC distribution system. The possibility of the converter design will be strengthened by using the series–parallel connection topology for isolated DC‐DC converters. A converter prototype with a power density of 10 W/cm3 has been fabricated, and the feasibility of the converter design has been confirmed experimentally. This result contributes to the realization of a highly efficient and highly space‐saving 380‐V DC distribution system. © 2013 Wiley Periodicals, Inc. Electr Eng Jpn, 186(3): 51–62, 2014; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/eej.22494  相似文献   
48.
Ni–Cr–Al metallic foam absorber with high porosity was catalytically activated using a Ru/γ-Al2O3 catalyst, and was subsequently tested with respect to CO2 reforming of methane in a small-scale volumetric receiver-reactor by using a sun-simulator. A chemical storage efficiency of 37% was obtained for a mean light flux of 325 kW m−2. Furthermore, the activity and the stability of the metallic foam absorber were compared with those of a SiC foam absorber activated with the same Ru/γ-Al2O3 catalyst for 50 h of light irradiation, and it was found that the metallic foam absorber has superior catalytic stability in comparison to the SiC form absorber. In addition, unlike ceramic foams such as SiC, metallic foams feature superior plasticity, which prevents the emergence of cracks caused by mechanical or thermal shock.  相似文献   
49.
In this paper, we investigated the activation energies of the aggregation–disaggregation self-oscillation induced by the Belousov-Zhabotinsky (BZ) reaction by utilizing the nonthermoresponsive polymer chain in a wide temperature range. This is because the conventional type self-oscillating polymer chain, with thermoresponsive poly(Nisopropylacrylamide) (poly(NIPAAm) main-chain covalently bonded to the ruthenium catalyst (Ru(bpy)3) of the BZ reaction, cannot evaluate the activation energy over the lower critical solution temperature (LCST). The nonthermoresponsive self-oscillating polymer chain is composed of a poly-vinylpyrrolidone (PVP) main-chain with the ruthenium catalyst (Ru(bpy)3). As a result, we clarified that the activation energy of the aggregation–disaggregation self-oscillation of the polymer chain is hardly affected by the concentrations of the BZ substrates. In addition, the activation energy of the nonthermoresponsive self-oscillating polymer chain was found to be almost the same value as normal BZ reaction, i.e., not including the self-oscillating polymer system with Ru moiety.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号