首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   840篇
  免费   73篇
  国内免费   9篇
电工技术   19篇
综合类   1篇
化学工业   324篇
金属工艺   10篇
机械仪表   11篇
建筑科学   17篇
能源动力   32篇
轻工业   155篇
水利工程   10篇
石油天然气   14篇
无线电   60篇
一般工业技术   147篇
冶金工业   13篇
原子能技术   7篇
自动化技术   102篇
  2024年   2篇
  2023年   24篇
  2022年   68篇
  2021年   83篇
  2020年   56篇
  2019年   78篇
  2018年   68篇
  2017年   81篇
  2016年   72篇
  2015年   44篇
  2014年   57篇
  2013年   74篇
  2012年   42篇
  2011年   45篇
  2010年   27篇
  2009年   28篇
  2008年   15篇
  2007年   12篇
  2006年   11篇
  2005年   5篇
  2004年   5篇
  2003年   3篇
  2000年   1篇
  1999年   3篇
  1997年   1篇
  1996年   4篇
  1995年   2篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1987年   1篇
  1984年   1篇
  1982年   2篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有922条查询结果,搜索用时 0 毫秒
901.
Object quantification requires an image segmentation to make measurements about size, material composition and morphology of the object. In vector-valued or multispectral images, each image channel has its signal characteristics and provides special information that may improve the results of image segmentation method. This paper presents a region-based active contour model for vector-valued image segmentation with a variational level set formulation. In this model, the local image intensities are characterized using Gaussian distributions with different means and variances. Furthermore, by utilizing Markov random field, the spatial correlation between neighboring pixels and voxels is modeled. With incorporation of intensity nonuniformity model, our method is able to deal with brain tissue segmentation from multispectral magnetic resonance (MR) images. Our experiments on synthetic images and multispectral cerebral MR images with different noise and bias level show the advantages of the proposed method.  相似文献   
902.
While liquid phase exfoliation can be used to produce nanosheets stabilized in polymer solutions, very little is known about the resultant nanosheet size, thickness, or monolayer content. The present study uses semiquantitative spectroscopic metrics based on extinction, Raman, and photoluminescence (PL) spectroscopy to investigate these parameters for WS2 nanosheets exfoliated in aqueous poly(vinyl alcohol) (PVA) solutions. By measuring Raman and PL simultaneously, the monolayer content can be tracked via the PL/Raman intensity ratio while varying processing conditions. The PL is found to be maximized for a stabilizing polymer concentration of 2 g L?1. In addition, the monolayer content can be controlled via the centrifugation conditions, exceeding 5% by mass in some cases. These techniques have allowed tracking the ratio of PL/Raman in a droplet of polymer‐stabilized WS2 nanosheets as the water evaporates during composite formation. No evidence of nanosheet aggregation is found under these conditions although the PL becomes dominated by trion emission as drying proceeds and the balance of doping from PVA/water changes. Finally, bulk PVA/WS2 composites are produced by freeze drying where >50% of the monolayers remain unaggregated, even at WS2 volume fractions as high as 10%.  相似文献   
903.
In this study Lolium perenne plant species was selected for the purpose of investigation of its phytoremediation potential for soil anthracene removal (at 60, 120, 180 mg/kg concentrations) with the aid of growth-promoting bacteria (Bacillus aerophilus) and bacteria population after 45 and 90 days. Results showed that the enhancement of anthracene disappearance is caused by an increase in the microbial community inoculation and microbial activity compared to that in un-inoculated soils. Enhanced dissipation in inoculated versus uninoculated soil with bacteria for Lolium perenne was 77.0–156.5 ppm (for 180 ppm anthracene). Our results show Lolium perenne is suitable candidates for the phytoremediation of soils contaminated with recalcitrant pollutants.  相似文献   
904.
The center of foot pressure (COP) is a commonly used output measure of the postural control system as it is indicative of the systems stability. A dense piece of foam, i.e., a sponge, can be used to emulate random environmental conditions that distort the ground reaction forces received and interpreted by the cutaneous sensors in the feet; thus introducing uncertainty into the control system. In this paper, the density and size of the sponge was selected such that a subject's weight did not cause full compression. In general, the COP is measured from the bottom of the sponge. As the sponge is used to distort ground reaction forces, it is reasonable then to assume that the COP signal would also be distorted. The use of other sensory information to identify state of balance, and compute necessary balance adjustments, is therefore required. In addition to a sponge, many different types of specialized footwear and inserts are used for people with peripheral neuropathy, such as diabetics. However, it is difficult to design diabetic footwear without a better understanding of the mechanical and physiological effects that different surfaces typical of outdoor terrains, such as a sponge, which cannot be predicted without the sense of the foot, have on balance. Therefore, the goal of this study was to investigate the change of the COP signal from the top and bottom of the sponge. Portable force sensing mats from Vista Medical were used to obtain the COP from the top and bottom of the sponge. The COP measured on the bottom of the sponge is not the same as the COP measured on the top, particularly in the medial-lateral direction. Several linear and nonlinear models were used to identify the unknown plant; i.e., the sponge. Overall, the nonlinear neural network method had superior performance when compared with the linear models. Thus, the results indicate that the signals from the top and bottom of the sponge are in fact different, and furthermore, they are nonlinearly related. A nonlinear mathematical model is proposed which describes COP distortion through a medium such as a sponge. Although the values for the model parameters determined were for a particular sponge, this study suggests that a neural network plant identification model may be applied to any medium other than the sponge; the information can then be used to determine how the balance control model is affected given the sensory information received.  相似文献   
905.
Solution studies on the binding properties of 4,5,6,7-tetrathiocino[1,2-b:3,4-b']diimidazolyl-1,3,8,10-tetraethyl-2,9-dithione (Et(4)todit) toward a number of cationic species including some lanthanide ions revealed the occurrence of a selective 1:1 complexation of the ligand with Sm(3+) ion. Consequently, Et(4)todit was used as a suitable neutral ionophore for the preparation of novel polymeric membrane (PME) and coated graphite (CGE) Sm(3+)-selective electrodes. The electrodes exhibit a Nernstian behavior for Sm(3+) ions over wide concentration ranges (1.0 x 10(-5)-1.0 x 10(-1) M for PME and 1.0 x 10(-7)-1.0 x 10(-1) M for CGE) and very low limits of detection (8.0 x 10(-6) M for PME and 1.6 x 10(-8) M for CGE). The proposed potentiometric sensors manifest advantages of relatively fast response, and, most importantly, good selectivities relative to wide variety of other cations, including other lanthanide ions. The selectivity behavior of the proposed Sm(3+)-selective electrodes revealed a great improvement compared to the best previously reported electrode for samarium(III) ion. The potentiometric responses of the electrodes are independent of the pH of the test solution in the pH range 4.0-6.5. The electrodes were successfully applied to the recovery of Sm(3+) ion from tap water samples and also, as an indicator electrode, in potentiometric titration of samarium(III) ions.  相似文献   
906.
Transdermal microneedle(MN)patches are a promising tool used to transport a wide variety of active compounds into the skin.To serve as a substitute for common h...  相似文献   
907.
In the present study, the effects of foliar application of salicylic acid (100 μM), cerium oxide (50 mg L−1), and cerium oxide:salicylic acid nanoparticles (CeO2: SA-nanoparticles, 50 mg L−1 + 100 μM) on the growth and physiological responses of purslane (Portulaca oleracea L.) were examined in non-saline and saline conditions (50 and 100 mM NaCl salinity). Foliar applications mitigated salinity-induced adverse effects, and the highest plant height and N, P, Mg, and Mn content were recorded in the variant with non-saline × foliar use of CeO2: SA-nanoparticles. The highest values of fresh and dry weight were noted in the treatment with no-salinity × foliar use of CeO2:SA-nanoparticles. The highest number of sub-branches was observed in the foliar treatments with CeO2-nanoparticles and CeO2:SA-nanoparticles without salinity stress, while the lowest number was noted in the 100 mM NaCl treatment. Moreover, the foliar application of CeO2:SA-nanoparticles and cerium-oxide nanoparticles improved the total soluble solid content, K, Fe, Zn, Ca, chlorophyll a, and oil yield in the plants. The salinity of 0 and 50 mM increased the K content, 1000-seed weight, total soluble solid content, and chlorophyll b content. The use of 100 mM NaCl with no-foliar spray increased the malondialdehyde, Na, and H2O2 content and the Na+/K+ ratio. No-salinity and 50 mM NaCl × CeO2: SA-nanoparticle interactions improved the anthocyanin content in plants. The phenolic content was influenced by NaCl100 and the foliar use of CeO2:SA-nanoparticles. The study revealed that the foliar treatment with CeO2:SA-nanoparticles alleviated the side effects of salinity by improving the physiological responses and growth-related traits of purslane plants.  相似文献   
908.
On a daily basis, people are exposed to a multitude of health-hazardous airborne particulate matter with notable deposition in the fragile alveolar region of the lungs. Hence, there is a great need for identification and prediction of material-associated diseases, currently hindered due to the lack of in-depth understanding of causal relationships, in particular between acute exposures and chronic symptoms. By applying advanced microscopies and omics to in vitro and in vivo systems, together with in silico molecular modeling, it is determined herein that the long-lasting response to a single exposure can originate from the interplay between the newly discovered nanomaterial quarantining and nanomaterial cycling between different lung cell types. This new insight finally allows prediction of the spectrum of lung inflammation associated with materials of interest using only in vitro measurements and in silico modeling, potentially relating outcomes to material properties for a large number of materials, and thus boosting safe-by-design-based material development. Because of its profound implications for animal-free predictive toxicology, this work paves the way to a more efficient and hazard-free introduction of numerous new advanced materials into our lives.  相似文献   
909.
It is expected that the LTE network, which includes the Radio Access Network (RAN) and the Core Network (CN) in 3GPP LTE systems, will be overloaded due to the huge number of Machine-Type Communication (MTC) devices in the near future. Overload in the RAN and CN of the LTE may result in congestion occurrence, resource waste, Quality of Service (QoS) degradation and in the worst-case, it will cause service unavailability. In this paper, we have proposed an adaptive mechanism to manage a large number of MTC devices in both RAN and CN of the LTE network. We use Access Class Barring (ACB) scheme to regulate the MTC traffic according to the congestions level in the RAN and CN. We consider a scenario in which two-priority-based classes of MTC devices are contending for the RAN resources. At first, the overload problem in the RAN is formulated to find the number of allowable contending MTC devices of each class taking into account their required QoS. Then, an active load management policy based on additive increase multiplicative decrease rule is proposed to control the incoming load from multiple cells to the CN. To effectively limit the number of MTC devices in both RAN and CN, in the proposed approach, each Evolved Node B updates the ACB factor upon overload detection in the RAN or CN in an adaptive manner. Simulation results show that the proposed mechanism is able to manage overload in the CN and RAN simultaneously.  相似文献   
910.
A fast, sensitive, and simple method using magnetic nanoparticles (MNPs) coated by 3-(trimethoxysilyl)-1-propantiol and modified with 2-amino-5-mercapto-1,3,4-thiadiazole, as an adsorbent has been successfully developed for extraction, preconcentration, and determination of trace amounts of Ag, Cd, Cu, and Zn from environmental samples. The prepared nanoparticles were characterized by Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). These magnetic nanoparticles can be easily dispersed in aqueous samples and retrieved by the application of external magnetic field via a piece of permanent magnet. The main factors affecting the extraction efficiency such as pH value, sample volume, eluent concentration and volume, ultrasonication time, and coexisting ions have been investigated and established. Under the optimal conditions, high concentration factors (194, 190, 170, and 182) were achieved for Ag, Cd, Cu, and Zn with relative standard deviations of 5.31%, 4.03%, 3.62%, and 4.20%, respectively. The limits of detection for Ag, Cd, Cu, and Zn were as low as 0.12, 0.12, 0.13 and 0.11 ng mL(-1). The prepared sorbent was applied for preconcentration of trace amounts of Ag, Cd, Cu, and Zn in the various water samples with satisfactory results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号