首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1946篇
  免费   153篇
  国内免费   15篇
电工技术   22篇
综合类   23篇
化学工业   432篇
金属工艺   63篇
机械仪表   71篇
建筑科学   33篇
能源动力   133篇
轻工业   206篇
水利工程   23篇
石油天然气   21篇
无线电   217篇
一般工业技术   430篇
冶金工业   132篇
原子能技术   35篇
自动化技术   273篇
  2024年   5篇
  2023年   56篇
  2022年   96篇
  2021年   156篇
  2020年   105篇
  2019年   109篇
  2018年   148篇
  2017年   122篇
  2016年   101篇
  2015年   76篇
  2014年   107篇
  2013年   171篇
  2012年   104篇
  2011年   111篇
  2010年   74篇
  2009年   59篇
  2008年   43篇
  2007年   38篇
  2006年   36篇
  2005年   20篇
  2004年   31篇
  2003年   17篇
  2002年   23篇
  2001年   18篇
  2000年   8篇
  1999年   15篇
  1998年   38篇
  1997年   31篇
  1996年   23篇
  1995年   18篇
  1994年   16篇
  1993年   17篇
  1992年   13篇
  1991年   13篇
  1990年   4篇
  1989年   15篇
  1988年   17篇
  1987年   8篇
  1986年   8篇
  1985年   8篇
  1983年   2篇
  1982年   4篇
  1981年   5篇
  1979年   2篇
  1978年   4篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   4篇
  1973年   2篇
排序方式: 共有2114条查询结果,搜索用时 15 毫秒
91.
The present study introduces a systematic approach to disperse graphene oxide (GO) during emulsion polymerization (EP) of Polyaniline (PANI) to form nanocomposites with improved electrical conductivities. PANI/GO samples were fabricated by loading different weight percents (wt%) of GO through modified in situ EP of the aniline monomer. The polymerization process was carried out in the presence of a functionalized protonic acid such as dodecyl benzene sulfonic acid, which acts both as an emulsifier and protonating agent. The microstructure of the PANI/GO nanocomposites was studied by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, UV–Vis spectrometry, Fourier transform infrared, differential thermal, and thermogravimetric analyses. The formed nanocomposites exhibited superior morphology and thermal stability. Meanwhile, the electrical conductivities of the nanocomposite pellets pressed at different applied pressures were determined using the four-probe analyzer. It was observed that the addition of GO was an essential component to improving the thermal stability and electrical conductivities of the PANI/GO nanocomposites. The electrical conductivities of the nanocomposites were considerably enhanced as compared to those of the individual PANI samples pressed at the same pressures. An enhanced conductivity of 474 S/m was observed at 5 wt% GO loading and an applied pressure of 6 t. Therefore, PANI/GO composites with desirable properties for various semiconductor applications can be obtained by in situ addition of GO during the polymerization process.  相似文献   
92.
A computational fluid dynamics (CFD) model is proposed to simulate urea hydrolysis for ammonia synthesis as a safe feed stock to flue gas conditioning in thermal power plants. A series of parametric studies to investigate flow rates, thermal boundary conditions, and reactor geometry was performed and operating conditions and reactor geometry were optimized. Detailed 3D flow, heat, and chemistry simulations of ammonia were carried out with predicted conversions comparable to measurements and the dependence of the experiments on the reaction parameters was evaluated. Through simulation under the same conditions the output was generated and compared to the experimental plot. Profiles of temperature and flow patterns were successfully achieved through simulation.  相似文献   
93.
Gelatin, because of its biodegradability and ecofriendly nature, has been the best choice for controlled release applications. Montmorillonite (MMT) clay shows a very important role in controlling drug delivery. Hence, an attempt was made in this work to prepare gelatin–MMT nanoparticles by desolvation method using acetone as precipitating agent, glutaraldehyde (GA) as crosslinking agent, and water as reaction media for controlled delivery of isoniazid, a drug for tuberculosis. Characterization of the MMT and isoniazid-loaded gelatin–MMT nanoparticles was carried out using Fourier transform infrared spectroscopy, X-ray diffraction study, scanning electron microscopy study, and transmission electron microscopy study. The effect of MMT on gelatin nanoparticles was evaluated in terms of water uptake studies, and subsequently to the release of isoniazid drug in buffer solution at pH 1.2 (gastric pH) and pH 7.4 (intestinal pH). Swelling experiment indicated that the gelatin nanoparticles were very sensitive to the pH environment. The release profile of drug was studied by a UV–Visible spectrophotometer. Cytotoxicity study revealed that MMT-containing nanoparticles showed less cytotoxicity than MMT-free nanoparticles.  相似文献   
94.
Citrus is the leading fruit crop of Pakistan and exported to different parts of the world. Due to suitable weather condition, this crop is affected by different biotic factors which seriously deteriorate its quality and quantity. During the months of November 2018 to January 2019, citrus brown rot symptoms were recurrently observed on sweet oranges in National Agricultural Research Centre (NARC), Islamabad. Causal agent of citrus brown rot was isolated, characterized, and identified as Fusarium oxysporum. For environment‐friendly control of this disease, leaf extract of Azadirachta indica was used for the green synthesis of iron oxide (Fe2O3) nanoparticles. These nanoparticles were characterized before their application for disease control. Fourier transform infrared spectroscopy (FTIR) of these synthesized nanoparticles described the presence of stabilizing and reducing compounds like alcohol, phenol, carboxylic acid, and alkaline and aromatic compounds. X‐Ray diffraction (XRD) analysis revealed the crystalline nature and size (24 nm) of these nanoparticles. Energy dispersive X‐Ray (EDX) analysis elaborated the presence of major elements in the samples. Scanning electron microscopy (SEM) confirmed the spinal shaped morphology of prepared nanoparticles. Successfully synthesized nanoparticles were evaluated for their antifungal potential. Different concentrations of Fe2O3 nanoparticles were used and maximum mycelial inhibition was observed at 1.0 mg/ml concentration. On the basis of these findings, it could be concluded that Fe2O3 nanoparticles, synthesized in the leaf extract of A. indica, can be successfully used for the control of brown rot of sweet oranges.  相似文献   
95.
Membrane bioreactors (MBRs) are often a preferred treatment technology for satellite water recycling facilities since they produce consistent effluent water quality with a small footprint and require little or no supervision. While the water quality produced from centralized MBRs has been widely reported, there is no study in the literature addressing the effluent quality from a broad range of satellite facilities. Thus, a study was conducted to characterize effluent water qualities produced by satellite MBRs with respect to organic, inorganic, physical and microbial parameters. Results from sampling 38 satellite MBR facilities across the U.S. demonstrated that 90% of these facilities produced nitrified (NH4-N <0.4 mg/L-N) effluents that have low organic carbon (TOC <8.1 mg/L), turbidities of <0.7 NTU, total coliform bacterial concentrations <100 CFU/100 mL and indigenous MS-2 bacteriophage concentrations <21 PFU/100 mL. Multiple sampling events from selected satellite facilities demonstrated process capability to consistently produce effluent with low concentrations of ammonia, TOC and turbidity. UV-254 transmittance values varied substantially during multiple sampling events indicating a need for attention in designing downstream UV disinfection systems. Although enteroviruses, rotaviruses and hepatitis A viruses (HAV) were absent in all samples, adenoviruses were detected in effluents of all nine MBR facilities sampled. The presence of Giardia cysts in filtrate samples of two of nine MBR facilities sampled demonstrated the need for an appropriate disinfection process at these facilities.  相似文献   
96.
It is a common practice to model multi‐storey tall buildings as frame structures where the loads for structural design are supported by beams and columns. Intrinsically, the structural strength provided by the walls and slabs are neglected. As the building height increases, the effect of lateral loads on multi‐storey structures increases considerably. The consideration of walls and slabs in addition to the frame structure modelling shall theoretically lead to improved lateral stiffness. Thus, a more economic structural design of multi‐storey buildings can be achieved. In this research, modelling and structural analysis of a 61‐storey building have been performed to investigate the effect of considering the walls, slabs and wall openings in addition to frame structure modelling. Sophisticated finite element approach has been adopted to configure the models, and various analyses have been performed. Parameters, such as maximum roof displacement and natural frequencies, are chosen to evaluate the structural performance. It has been observed that the consideration of slabs alone with the frame modelling may have negligible improvement on structural performance. However, when the slabs are combined with walls in addition to frame modelling, significant improvement in structural performance can be achieved. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
97.
Farmyard manure (FYM-BC) and poultry manure (PM-BC) derived biochars were applied as adsorbents to remove Cd2+ from water. Results indicated that PM-BC was a more efficient adsorbent than FYM-BC at all experimental conditions. Maximum Cd2+ adsorption was observed at pH 4, temperature 318 K and contact time 1 h, regardless of biochar type. The Langmuir model predicted maximum adsorption capacity of 90.09 mg g?1 for PM-BC. The data fitting to pseudo-second-order model proposed chemisorption of Cd2+ onto biochars. Thermodynamics indicated that adsorption was spontaneous and endothermic. Post-adsorption analysis provided evidences of strong chemical interactions between biochars’ functional groups and Cd2+ ions.  相似文献   
98.
99.
Objectives: To investigate the effect of different self-etch adhesive systems application techniques: active or passive in a single or double layer on adhesive–dentin microshear bond strength.

Methods: Occlusal surfaces of 48 extracted human molars were ground to expose flat superficial dentin surfaces. Specimens were randomly divided into two main groups according to the tested self-etch adhesive system either: One-step self-etch (AdperTM easy-one) or two-step self-etch (AdperTM SE Plus). Each adhesive system was applied on the prepared dentin surfaces followed one of these techniques: (1) Passive application of a single layer, (2) Active application of single layer, (3) Passive application of double adhesive layer (with light curing in between), and (4) Active application of double adhesive layers. Resin composite was packed inside micro-tubes fixed on the bonded dentin surfaces and light cured for 40 s. All specimens were stored in artificial saliva either for 24 h or 3 months before testing. Microshear bond strength test was employed using a universal testing machine at a crosshead speed of 0.5 mm/min.

Results: AdperTM SE Plus showed higher significant microshear bond strength in compared with AdperTM easy-one. For both adhesive systems active application showed higher significant microshear bond strength to dentin than passive application. Double application of adhesive systems showed lower microshear bond strength than single application.

Conclusion: Active application of self-etch adhesives could improve the dentin microshear bond strength. Double application with curing in between the layers did not improve the bond strength to the tested adhesive.  相似文献   

100.
Novel multifunctional polymer nanofiber electrolytes with covalence crosslinked structures from various solution blends of reactive intercalated poly(vinyl alcohol)/octadecylamine montmorillonite (as a matrix polymer), poly(maleic anhydride‐alt‐methyl vinyl ether) (as a partner polymer) and their NaOH‐absorbing and Ag‐carrying polymer complexes were fabricated via electrospinning. Chemical, physical, morphological, and electrical properties of nanofiber structures were investigated by FTIR, XRD, SEM, and electrical analysis methods. Ag precursors in fiber composites significantly improved phase separation processing, fiber morphologies, diameter distributions, and electrical properties of the fibers. In situ generation of Ag nanoparticles and their distribution on nanofiber surfaces during fiber formation occurred via complex formation between silver cations and electronegative functional groups from both matrix and partner polymers as stabilizing/reducing agents. Electrical resistance and conductivity strongly depended on matrix/partner polymer ratios and absorption time of NaOH solution on nanofibers. Addition of NaOH changed the electrical properties of fiber structures from almost dielectric state to excellent conductivity form. The fabricated unique nanofiber electrolytes are promising candidates for applications in power and fuel cell nanotechnology, electrochemical, and bioengineering processes as reactive semiconductive platforms. POLYM. ENG. SCI., 56:204–213, 2016. © 2015 Society of Plastics Engineers  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号