首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   736篇
  免费   30篇
  国内免费   2篇
电工技术   14篇
综合类   1篇
化学工业   179篇
金属工艺   14篇
机械仪表   17篇
建筑科学   21篇
矿业工程   2篇
能源动力   96篇
轻工业   51篇
水利工程   4篇
石油天然气   6篇
无线电   93篇
一般工业技术   125篇
冶金工业   46篇
原子能技术   7篇
自动化技术   92篇
  2024年   1篇
  2023年   25篇
  2022年   45篇
  2021年   64篇
  2020年   34篇
  2019年   51篇
  2018年   37篇
  2017年   20篇
  2016年   34篇
  2015年   25篇
  2014年   35篇
  2013年   61篇
  2012年   49篇
  2011年   40篇
  2010年   33篇
  2009年   26篇
  2008年   20篇
  2007年   18篇
  2006年   11篇
  2005年   14篇
  2004年   17篇
  2003年   12篇
  2002年   6篇
  2001年   4篇
  2000年   11篇
  1999年   10篇
  1998年   9篇
  1997年   5篇
  1996年   4篇
  1995年   9篇
  1994年   5篇
  1993年   5篇
  1992年   2篇
  1991年   1篇
  1990年   5篇
  1989年   5篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1974年   2篇
  1973年   1篇
  1972年   2篇
排序方式: 共有768条查询结果,搜索用时 0 毫秒
21.
It is notoriously well-known that abrasive waterjet milling (AWJM) is difficult to perform controlled-depth owing to variable geometries of the footprints that depends not only on jet energy and the exposure time upon the workpiece, but also on the orientation of the jet relative to the target surface. An attempt is made to develop a model that can be generally applied to different machine system and to predict individual jet footprints that are one of the key steps for controlled-depth AWJM. To address this, the paper breaks new ground in geometrical modelling of AWJM with the benefit of having few variables for predicting the footprints obtained under the following conditions: (i) any time exposures (i.e. Vf, jet feed speeds); (ii) jet orientations (θ) relative to the target surface; (iii) arbitrarily moving straight jet-paths (β). These conditions reflect the real industrial conditions under which the process is run. The geometrical model results in a non-linear partial differential equation, a method to evaluate the material specific erosion rate from the characteristics of a shallow trench obtained experimentally using high jet feed speeds. Under these conditions, the governing equations can be linearised and solved analytically.The model validation for full profile of trenches generated at various tilt angles (θ=70-90°), jet feed rates (Vf=500-1000 mm/min) and jet path directions (β=0-270°) indicates that a high degree of accuracy (mean of the residuals RM<3% and root-mean-square error of residuals RRMS<6%) has been achieved. This innovative footprint modelling approach has the key advantage of being independent of the properties of the workpiece material and/or machine setup, since it calibrates the specific etching rate. By considering any orientation of the jet plume vector relative to the target surface, this approach becomes a powerful tool for the development of advanced jet path strategies to enable AWJM of complex geometries.  相似文献   
22.
23.
24.
Development in graphite, graphene, and graphene nanoplatelet composites with epoxy matrix is presented here. Graphite and its modified forms propose exclusive properties to composites. Graphene has developed as subject of huge scientific attention due to excellent electron transport, mechanical properties, and high surface area. When combined appropriately with epoxy, these atomically thin carbon sheets can expressively progress physical properties even at very small loading. Epoxy/graphene nanoplatelet nanocomposite with enhanced properties was also reported. We summarized and compared electrical, thermal, and mechanical properties of epoxy composites derived from these three nanofillers. Potential of carbon fillers with epoxy matrix is also discussed.  相似文献   
25.
In this review, main focus is on the different types of fire retardants, their properties, and pertinent potential. Both inorganic (titania, silica, and zinc oxide) and organic (graphite, graphene, and graphene nanoplatelet) compounds have been discussed as flame inhibitors. Among various sorts of fire retardants, halogen-based flame inhibitors possess outstanding features. Consequently influence of fire retardant on the performance of epoxy composite has been discussed. It was noted that significant enhancement occurs by addition of organic and inorganic fillers in epoxy matrix. However, halogen additives impart better flame resistance to epoxy composite. Toward the end of this review, potential of halogen-containing fire retardant is discussed.  相似文献   
26.
The interactions between anionic dye (tartrazine) and cationic surfactants (dodecyltrimethylammonium bromide and cetyltrimethylammonium bromide) have been studied by conductometric, spectrophotometric, and tensiometric techniques. The conductance and surface tension of dodecyltrimethylammonium bromide and cetyltrimethylammonium bromide in pure water as well as in aqueous tartrazine when plotted with surfactant concentration gave values of the critical micelle concentration at different temperatures. As well as increasing the length of the carbon chain of surfactants, the presence of tartrazine reduces the critical micelle concentration. From specific conductivity data, the counterion dissociation constant, standard free energy, enthalpy, entropy of micellisation, surface excess concentration, surface tension at critical micelle concentration, minimum area per molecule, surface pressure at critical micelle concentration, and Gibbs energy of adsorption were evaluated. Spectroscopic studies reveal that the binding of dye to micelles brings a bathochromic shift in dye absorption spectra that indicates dye–surfactant interaction.  相似文献   
27.
Bulletin of Engineering Geology and the Environment - The numerical methods for slope stability problems always have a serious concern related to their continuum and discontinuum nature. In...  相似文献   
28.
The performances of three advanced non-linear controllers are analyzed for the optimal set point tracking of styrene free radical polymerization (FRP) in batch reactors. The three controllers are the artificial neural network-based MPC (NN-MPC), the artificial fuzzy logic controller (FLC) as well as the generic model controller (GMC). A recently developed hybrid model (Hosen et al., 2011a. Asia-Pac. J. Chem. Eng. 6(2), 274) is utilized in the control study to design and tune the proposed controllers. The optimal minimum temperature profiles are determined using the Hamiltonian maximum principle. Different types of disturbances are introduced and applied to examine the stability of controller performance. The experimental studies revealed that the performance of the NN-MPC is superior to that of FLC and GMC.  相似文献   
29.
Angiogenesis is a process associated with the migration and proliferation of endothelial cells (EC) to form new blood vessels. It is involved in various physiological and pathophysiological conditions and is controlled by a wide range of proangiogenic and antiangiogenic molecules. The plasminogen activator–plasmin system plays a major role in the extracellular matrix remodeling process necessary for angiogenesis. Urokinase/tissue-type plasminogen activators (uPA/tPA) convert plasminogen into the active enzyme plasmin, which in turn activates matrix metalloproteinases and degrades the extracellular matrix releasing growth factors and proangiogenic molecules such as the vascular endothelial growth factor (VEGF-A). The plasminogen activator inhibitor-1 (PAI-1) is the main inhibitor of uPA and tPA, thereby an inhibitor of pericellular proteolysis and intravascular fibrinolysis, respectively. Paradoxically, PAI-1, which is expressed by EC during angiogenesis, is elevated in several cancers and is found to promote angiogenesis by regulating plasmin-mediated proteolysis and by promoting cellular migration through vitronectin. The urokinase-type plasminogen activator receptor (uPAR) also induces EC cellular migration during angiogenesis via interacting with signaling partners. Understanding the molecular functions of the plasminogen activator plasmin system and targeting angiogenesis via blocking serine proteases or their interactions with other molecules is one of the major therapeutic strategies scientists have been attracted to in controlling tumor growth and other pathological conditions characterized by neovascularization.  相似文献   
30.
One of the most common complications during pregnancy is gestational diabetes mellitus (GDM), hyperglycemia that occurs for the first time during pregnancy. The condition is multifactorial, caused by an interaction between genetic, epigenetic, and environmental factors. However, the underlying mechanisms responsible for its pathogenesis remain elusive. Moreover, in contrast to several common metabolic disorders, molecular research in GDM is lagging. It is important to recognize that GDM is still commonly diagnosed during the second trimester of pregnancy using the oral glucose tolerance test (OGGT), at a time when both a fetal and maternal pathophysiology is already present, demonstrating the increased blood glucose levels associated with exacerbated insulin resistance. Therefore, early detection of metabolic changes and associated epigenetic and genetic factors that can lead to an improved prediction of adverse pregnancy outcomes and future cardio-metabolic pathologies in GDM women and their children is imperative. Several genomic and epigenetic approaches have been used to identify the genes, genetic variants, metabolic pathways, and epigenetic modifications involved in GDM to determine its etiology. In this article, we explore these factors as well as how their functional effects may contribute to immediate and future pathologies in women with GDM and their offspring from birth to adulthood. We also discuss how these approaches contribute to the changes in different molecular pathways that contribute to the GDM pathogenesis, with a special focus on the development of insulin resistance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号