首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   323篇
  免费   24篇
  国内免费   1篇
电工技术   3篇
化学工业   100篇
金属工艺   4篇
机械仪表   2篇
建筑科学   11篇
能源动力   7篇
轻工业   12篇
水利工程   1篇
石油天然气   3篇
武器工业   1篇
无线电   19篇
一般工业技术   112篇
冶金工业   40篇
原子能技术   6篇
自动化技术   27篇
  2023年   4篇
  2021年   9篇
  2020年   5篇
  2019年   2篇
  2018年   14篇
  2017年   13篇
  2016年   18篇
  2015年   7篇
  2014年   15篇
  2013年   26篇
  2012年   10篇
  2011年   27篇
  2010年   15篇
  2009年   18篇
  2008年   16篇
  2007年   15篇
  2006年   8篇
  2005年   6篇
  2004年   6篇
  2003年   13篇
  2002年   9篇
  2001年   3篇
  2000年   9篇
  1999年   6篇
  1998年   1篇
  1997年   4篇
  1996年   1篇
  1995年   6篇
  1994年   6篇
  1993年   2篇
  1992年   4篇
  1991年   5篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1985年   2篇
  1984年   4篇
  1983年   3篇
  1982年   4篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   7篇
  1977年   5篇
  1976年   3篇
  1975年   2篇
  1974年   3篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有348条查询结果,搜索用时 46 毫秒
11.
Presented is a new microplane model for concrete, labeled M5, which improves the representation of tensile cohesive fracture by eliminating spurious excessive lateral strains and stress locking for far postpeak tensile strains. To achieve improvement, a kinematically constrained microplane system simulating hardening nonlinear behavior (nearly identical to previous Model M4 stripped of tensile softening) is coupled in series with a statically constrained microplane system simulating solely the cohesive tensile fracture. This coupling is made possible by developing a new iterative algorithm and by proving the conditions of its convergence. The special aspect of this algorithm (contrasting with the classical return mapping algorithm for hardening plasticity) is that the cohesive softening stiffness matrix (which is not positive definite) is used as the predictor and the hardening stiffness matrix as the corrector. The softening cohesive stiffness for fracturing is related to the fracture energy of concrete and the effective crack spacing. The postpeak softening slopes on the microplanes can be adjusted according to the element size in the sense of the crack band model. Finally, an incremental thermodynamic potential for the coupling of statically and kinematically constrained microplane systems is formulated. The data fitting and experimental calibration for tensile strain softening are relegated to a subsequent paper in this issue, while all the nonlinear triaxial response in compression remains the same as for Model M4.  相似文献   
12.
The physical sources of randomness in quasibrittle fracture described by the cohesive crack model are discussed and theoretical arguments for the basic form of the probability distribution are presented. The probability distribution of the size effect on the nominal strength of structures made of heterogeneous quasibrittle materials is derived, under certain simplifying assumptions, from the nonlocal generalization of Weibull theory. Attention is limited to structures of positive geometry failing at the initiation of macroscopic crack growth from a zone of distributed cracking. It is shown that, for small structures, which do not dwarf the fracture process zone (FPZ), the mean size effect is deterministic, agreeing with the energetic size effect theory, which describes the size effect due to stress redistribution and the associated energy release caused by finite size of the FPZ formed before failure. Material randomness governs the statistical distribution of the nominal strength of structure and, for very large structure sizes, also the mean. The large-size and small-size asymptotic properties of size effect are determined, and the reasons for the existence of intermediate asymptotics are pointed out. Asymptotic matching is then used to obtain an approximate closed-form analytical expression for the probability distribution of failure load for any structure size. For large sizes, the probability distribution converges to the Weibull distribution for the weakest link model, and for small sizes, it converges to the Gaussian distribution justified by Daniels' fiber bundle model. Comparisons with experimental data on the size-dependence of the modulus of rupture of concrete and laminates are shown. Monte Carlo simulations with finite elements are the subject of ongoing studies by Pang at Northwestern University to be reported later.  相似文献   
13.
14.
15.
Sangwan  Vinod K.  Kang  Joohoon  Lam  David  Gish  J. Tyler  Wells  Spencer A.  Luxa  Jan  Male  James P.  Snyder  G. Jeffrey  Sofer  Zdeněk  Hersam  Mark C. 《Nano Research》2021,14(6):1961-1966

Emerging layered semiconductors present multiple advantages for optoelectronic technologies including high carrier mobilities, strong light-matter interactions, and tunable optical absorption and emission. Here, metal-semiconductor-metal avalanche photodiodes (APDs) are fabricated from Bi2O2Se crystals, which consist of electrostatically bound [Bi2O2]2+ and [Se]2− layers. The resulting APDs possess an intrinsic carrier multiplication factor up to 400 at 7 K with a responsivity gain exceeding 3,000 A/W and bandwidth of ~ 400 kHz at a visible wavelength of 515.6 nm, ultimately resulting in a gain bandwidth product exceeding 1 GHz. Due to exceptionally low dark currents, Bi2O2Se APDs also yield high detectivities up to 4.6 × 1014 Jones. A systematic analysis of the photocurrent temperature and bias dependence reveals that the carrier multiplication process in Bi2O2Se APDs is consistent with a reverse biased Schottky diode model with a barrier height of ~ 44 meV, in contrast to the charge trapping extrinsic gain mechanism that dominates most layered semiconductor phototransistors. In this manner, layered Bi2O2Se APDs provide a unique platform that can be exploited in a diverse range of high-performance photodetector applications.

  相似文献   
16.
Different types of enzymes such as lipases, several phosphatases, dehydrogenases, oxidases, amylases and others are well suited for the reactions in SC-CO2. The stability and the activity of enzymes exposed to carbon dioxide under high pressure depend on enzyme species, water content in the solution and on the pressure and temperature of the reaction system. The three-dimensional structure of enzymes may be significantly altered under extreme conditions, causing their denaturation and consequent loss of activity. If the conditions are less adverse, the protein structure may be largely retained. Minor structural changes may induce an alternative active protein state with altered enzyme activity, specificity and stability.  相似文献   
17.
This work is focused on the changes of phase structure in polystyrene/polyethylene blends with up to 15 wt.% of dispersed phase during elongational experiments in creep. In the first part, features of the experiments at constant stress with a special attention to morphology development in polymer blends are discussed. In the second part of the paper the deformation behavior of the dispersed droplets in dependence on applied stress and total strain is studied. It was found that with increasing the initial particle size the formation of homogeneously deformed long fibrils is preferred during the elongation. A maximum deformability of the droplets was observed, which cannot be increased by applying higher stresses, although the affine deformation of the droplets was not reached.  相似文献   
18.
This experimental study focuses on generation and control of annular impinging jets. The annular nozzle used in the investigations was designed with an active flow control system using 12 synthetic jets issuing radially from the central nozzle body. Measurements of the control effects were made on the impingement wall. The data acquisition involved wall pressure and wall mass transfer (by the naphthalene sublimation technique) using air as the working fluid. Also measured was time-mean flow velocity (by a Pitot probe) in the jet flow field. Moreover, flow visualization was carried out. Two main flow-field patterns (A and B) were identified. The patterns differ in the size of the separated-flow recirculation regions that develop attached to the nozzle central body: While pattern A is characterized by a quite small recirculation region (bubble) extending not far from the nozzle exit, pattern B exhibits a large recirculation region, reaching up to the impingement wall, on which it forms a stagnation circle. The control action modifies the flow field, resulting in changes of the corresponding heat/mass transfer distributions. The convective transfer rate on the stagnation circle can be demonstrably enhanced by 20% at a moderate nozzle-to-wall distance, equal to 0.6 of the nozzle outer diameter.  相似文献   
19.
20.
A new axisymmetric finite element program for the analysis of pore pressure, moisture content and temperature in heated concrete is described. The program is based on the diffusion equations for coupled heat and moisture transfer and uses a step-by-step time integration. The finite element scheme is based on Galerkin method. For time integration a step-by-step solution with iterations is used. The numerical analysis is complicated by the fact that the sorption isotherms exhibit a steep jump at saturation-nonsaturation transitions, and that the permeability dependence on temperature exhibits a jump of two orders of magnitude at 100°C. The mathematical model takes into account the release of chemically bound water due to dehydration and the associated changes in the pore space. The program may also be used at normal temperatures. Predictions of the program are compared with tests by HEDL as well as two other existing programs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号