首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1751篇
  免费   106篇
  国内免费   16篇
电工技术   26篇
综合类   3篇
化学工业   412篇
金属工艺   33篇
机械仪表   55篇
建筑科学   58篇
矿业工程   2篇
能源动力   100篇
轻工业   158篇
水利工程   24篇
石油天然气   22篇
无线电   180篇
一般工业技术   378篇
冶金工业   134篇
原子能技术   47篇
自动化技术   241篇
  2024年   5篇
  2023年   27篇
  2022年   94篇
  2021年   120篇
  2020年   93篇
  2019年   99篇
  2018年   101篇
  2017年   97篇
  2016年   127篇
  2015年   66篇
  2014年   81篇
  2013年   130篇
  2012年   94篇
  2011年   115篇
  2010年   80篇
  2009年   58篇
  2008年   58篇
  2007年   49篇
  2006年   18篇
  2005年   16篇
  2004年   14篇
  2003年   15篇
  2002年   15篇
  2001年   11篇
  2000年   12篇
  1999年   8篇
  1998年   43篇
  1997年   27篇
  1996年   24篇
  1995年   11篇
  1994年   20篇
  1993年   10篇
  1992年   8篇
  1991年   15篇
  1990年   9篇
  1989年   12篇
  1988年   15篇
  1987年   10篇
  1985年   7篇
  1984年   6篇
  1983年   6篇
  1981年   5篇
  1980年   3篇
  1979年   6篇
  1977年   6篇
  1976年   5篇
  1975年   3篇
  1974年   4篇
  1972年   3篇
  1966年   2篇
排序方式: 共有1873条查询结果,搜索用时 69 毫秒
81.
82.
Drought stress is one of the major abiotic stresses that are a threat to crop production worldwide. Drought stress impairs the plants growth and yield. Therefore, the aim of the present experiment was to select the tolerant genotype/s on the basis of moprpho-physiological and biochemical characteristics of 10 Vicia faba genotypes (Zafar 1, Zafar 2, Shebam, Makamora, Espan, Giza Blanka, Giza 3, C4, C5 and G853) under drought stress. We studied the effect of different levels of drought stress i.e., (i) normal irrigation (ii) mild stress (iii) moderate stress, and (iv) severe stress on plant height (PH) plant−1, fresh weight (FW) and dry weight (DW) plant−1, area leaf−1, leaf relative water content (RWC), proline (Pro) content, total chlorophyll (Total Chl) content, electrolyte leakage (EL), malondialdehyde (MDA), hydrogen peroxide (H2O2) content, and activities of catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) of genotypes of faba bean. Drought stress reduced all growth parameters and Total Chl content of all genotypes. However, the deteriorating effect of drought stress on the growth performance of genotypes “C5” and “Zafar 1” were relatively low due to its better antioxidant enzymes activities (CAT, POD and SOD), and accumulation of Pro and Total Chl, and leaf RWC. In the study, genotype “C5” and “Zafar 1” were found to be relatively tolerant to drought stress and genotypes “G853” and “C4” were sensitive to drought stress.  相似文献   
83.
84.
Current research work was conducted for enhancing solubility of rosuvastatin calcium. A highly stable, biocompatible, and nontoxic β-cyclodextrin-g-poly(methacrylic acid) graft polymeric network was developed. Formulations proved entrapment efficacy (%) in between 82.30?±?0.25 and 89.00?±?0.25 and gel fraction between 90.34?±?1.012 and 95.25?±?1.331. Formulation HM2 had shown optimum swelling and drug release, i.e., 85.74% at pH 6.8. The best-fit model was first-order kinetics with anomalous diffusion as release mechanism. Likewise, solubility enhancement, i.e., 9.59-folds was determined at pH 6.8. It was concluded that hydrogel microparticles are the promising tools for improving solubility and bioavailability of hydrophobic drugs.  相似文献   
85.
A micro-mesoporous ZSM-5/MCM-41 composite molecular sieve (ZM13) was synthesized and tested as an FCC catalyst additive to enhance the yield of propylene from catalytic cracking of vacuum gas oil (VGO). The catalytic performance of the additive was assessed using a commercial equilibrium USY FCC catalyst (E-Cat) in a fixed-bed micro-activity test unit (MAT) at 520?°C and various catalyst/oil ratios. MCM-41, ZSM-5 and two ZSM-5/MCM-41 composites were systematically characterized by complementary techniques such as XRD, BET, FTIR and SEM. The characterization results showed that the composites contained secondary building unit with different textural properties compared to pure ZSM-5 and MCM-41. MAT results showed that the VGO cracking activity of E-Cat did not decrease by using these additives. The highest propylene yield of 12.2 wt% was achieved over steamed ZSM-5/MCM-41 composite additive (ZM13) compared with 8.6 wt% over conventional ZSM-5 additive at similar gasoline yield penalty. The enhanced production of propylene over composite additive was attributed to its mesopores that suppressed secondary and hydrogen transfer reactions and offered easier transport and accessibility to active sites. Gasoline quality was improved by the use of all additives except MCM-41, as octane rating increased by 6?C12 numbers.  相似文献   
86.
The present study describes the preparation and characterization of a novel nanocomposite, based on montmorillonite clay (MMT) encapsulation in poly(ethylene glycol) (PEG) by an electrospraying process. PEG/MMT nanocomposites with MMT contents ranging from 1 to 5 wt % were successfully prepared and characterized in relation to their morphological, spectroscopic, structural, and thermal properties. Scanning electron microscopy, transmission electron microscopy, and atomic force microscopy micrographs showed that the PEG nanobeads formed spherical shapes, and with increasing amount of MMT clay, the size of the beads decreased significantly, ranging from 120 to 3.7 nm. The Fourier transform infrared spectroscopy results suggested that there was no significant chemical interaction between PEG and MMT clay. However, the d‐spacing of MMT clay in PEG/MMT increased, a clear indication of the intercalation of PEG in the interlayer spaces of MMT clay. Furthermore, the thermal stability of PEG polymer decreased upon encapsulation of MMT clay in PEG/MMT composites. Nanoindentation results showed that the hardness and Young's modulus of the PEG/MMT composites increased with 3 wt % loading of MMT. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45048.  相似文献   
87.
The main goal of this study was to develop a full range multi-scale modeling technique to extract Young??s modulus and Poisson??s ratio of carbon nanotube reinforced polymer (CNTRP) composites covering all nano, micro, meso and macro scales. The developed model consists of two different phases as top-down scanning and bottom-up modeling. At the first stage, the material region will be scanned from the macro level downward to the nano-scale. Effective parameters associated with each scale will be identified through this scanning procedure. Taking into account identified effective parameters of each specific scale, the suitable representative volume elements (RVE) will be defined for all nano, micro, meso and macro scales, separately. In the second stage of the modeling procedure, a hierarchical multi-scale modeling approach is developed. This modeling strategy would analyze the material at each scale and obtained results that were fed to the upper scale as input information. Due to involved random parameters, the developed modeling technique is implemented stochastically. It has been shown that the developed modeling procedure provides a clear insight to the properties of CNTRP and it is a very efficient tool for simulation of mechanical behavior of CNTRP composites. A sensitivity analysis was conducted to quantify the influence of the identified random parameters on the overall behavior of CNTRP.  相似文献   
88.
The present study deals with weak gels based on sulfonated polyacrylamide (SPA)/scleroglucan (SC)/Cr3+ with an exceptional thermal stability in electrolyte media. The rheological results showed that on increasing the SC concentration the shear viscosity and storage modulus of the SPA/SC/Cr3+ system were increased and the dependence of the storage modulus on frequency became weaker. The yield stress of the SPA/SC/Cr3+ system was higher than that of the corresponding SPA/SC system. The thermochemical stability increased with increasing relaxation time. The SPA/SC/Cr3+ semi‐interpenetrating network exhibited the lowest viscosity loss in electrolyte media; therefore this system may be a potential candidate for enhanced oil recovery applications. © 2016 Society of Chemical Industry  相似文献   
89.
This research work reports on development and characterization of multi-walled carbon nanotube (MWCNT)-doped polyvinylidene difluoride (PVDF) nanofibers by the electrospinning method. PVDF is an extensively studied polymer both theoretically and experimentally due to its appealing ferroelectric, piezoelectric, and pyroelectric properties which strongly favors its promising applications in the development of micro/nanostructure devices. The foremost reason for its ferroelectric and piezoelectric behaviors has been attributed to its crystalline structure, specifically the presence of β-phase; however, the existence of the small percentage of β-phase in pristine PVDF limits its applications. To enhance the electroactive features in the PVDF, MWCNTs have been doped in it to prepare electrospun nanofibers, as electrospinning is a single-step approach. These nonwoven nanofibers were prepared at a DC voltage of 20 kV which were subsequently calcined at 100 °C for 12 h. The estimation of crystal structure and phase identification in these nanofibers have been determined by attenuated FT-IR and XRD, while the morphology, microstructure, mean diameter, and length have been examined by FE-SEM. The observed electrical conductivity, capacitance, permittivity (ε), conductivity (δ), and impedance (Z) in these samples have been tailored by doping a range of MWCNT contents and optimizing the experimental conditions.  相似文献   
90.
Flue gas emissions and the harmful effects of these gases urge to separate and capture these unwanted gases. Ionic liquids due to negligible vapor pressure, thermal stability, and wide electrochemical stability have expanded its application in gas separations. A comprehensive overview of the recent developments and applications of ionic liquid membranes (ILMs) for gas separation is given. The three general classifications of ILMs, such as supported ionic liquid membranes (SILMs), ionic liquid polymeric membranes (ILPMs), and ionic liquid mixed‐matrix membranes (ILMMMs) along with their applications, for the separation of various mixed gases systems is discussed in detail. Furthermore, issues, challenges, computational study, and future perspectives for ILMs are also considered.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号