排序方式: 共有42条查询结果,搜索用时 62 毫秒
11.
12.
可再生能源、电力电子设备渗透率持续增大以及大功率交直流混联,电网的动态性、随机性和不确定性显著增强,给电力系统安全稳定运行带来新的挑战.为更有效解决电网中出现的电压、潮流快速波动而导致的安全问题,提出一种基于最大熵深度强化学习算法的智能电网调控辅助决策方法,同时考虑多种控制目标,对电网运行方式进行在线优化控制.该方法将电网调度控制决策建模为马尔科夫决策过程,训练多线程智能体,并采用周期性在线训练机制对智能体的控制性能进行不断提升.基于该方法所研发的辅助决策原型软件部署在国网江苏电力调度控制中心,可与电网调度控制系统环境直接交互,自主学习且不断提升智能体调控决策能力.训练好的智能体可针对电压越限、联络线潮流越限、网损等综合控制目标在毫秒级时间内给出有效控制策略. 相似文献
13.
无机房电梯公共导轨支架起着同时固定轿厢和对重导轨的作用,承受来自轿厢和对重导轨在不同工况时对其作用的水平力,对于保障轿厢运行的平稳性、安全性有着重要作用。现基于Ansys Workbench平台对导轨支架强度进行分析,并通过改进结构设计,减小最大变形量;采用DOE优化方法,以导轨支架的变形量为优化目标,做了优化分析,并在一定的优化样本内求得了最优解。 相似文献
14.
15.
随着大容量远距离高压直流输电工程建设和大规模可再生能源的接入,受端电网频率安全风险增大。针对大容量直流闭锁等可能触发低频减载的严重扰动,文中提出基于机器学习的电力系统最大暂态频率偏移快速估计方法。将问题分解为低频减载响应判断和最大频率偏移估计两个子问题,通过子模型交替求解估计最大暂态频率偏移;基于支持向量回归方法构建最大频率偏移估计子模型,以支持向量机为个体学习器构建基于Bagging集成学习的低频减载响应判断子模型;以运行方式信息和扰动信息为输入,采用ReliefF算法和主成分分析法对输入特征进行选择和提取,降低模型复杂度。以某多直流馈入受端系统为例构建最大暂态频率偏移估计模型,验证所提方法的准确性和适应性。 相似文献
16.
随着电网规模不断扩大,传统集中式状态估计方法的数据通信与存储任务重、计算量大,难以满足现代电力系统状态估计需求。在计及系统状态估计非线性的基础上,将电力系统划分为若干个不重叠的子区域,并利用拉格朗日乘子法对状态估计方程进行解耦,建立电力系统多区域非线性状态估计模型。基于一致性理论建立全分布式状态估计方法对模型进行求解,该方法无需状态估计控制中心,只需各子区域交换一致性变量和边界节点的状态变量信息,各子区域便可平行独立地计算本地状态变量估计值,较集中式状态估计均衡了通信及计算负担。IEEE 14节点系统仿真结果验证了所提分布式状态估计方法的有效性。 相似文献
17.
新能源发电的推广和使用加剧了用电高峰期电网供需矛盾,对电力用户的负荷模式进行识别可以为负荷参与调峰决策提供支持。为提高用电负荷模式辨识准确率,提出一种基于改进粒子群(IPSO)算法优化长短期记忆(LSTM)神经网络的用电负荷模式识别模型。通过引入多样化初始参数、动态非线性权重和淘汰机制等措施,改善了粒子群算法的寻优能力,实现对LSTM的关键参数寻优,确定LSTM神经网络的最优参数组合。实验结果表明,该方法可以有效提高模型的准确率,同时节省模型的训练时间。 相似文献
18.
19.
20.