首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   186篇
  免费   4篇
  国内免费   2篇
电工技术   5篇
综合类   2篇
化学工业   24篇
金属工艺   57篇
机械仪表   18篇
建筑科学   5篇
矿业工程   8篇
轻工业   6篇
水利工程   11篇
石油天然气   6篇
武器工业   3篇
无线电   7篇
一般工业技术   31篇
冶金工业   9篇
  2024年   1篇
  2023年   2篇
  2022年   3篇
  2020年   3篇
  2019年   3篇
  2018年   4篇
  2017年   3篇
  2016年   1篇
  2015年   2篇
  2014年   9篇
  2013年   7篇
  2012年   14篇
  2011年   12篇
  2010年   17篇
  2009年   10篇
  2008年   11篇
  2007年   20篇
  2006年   17篇
  2005年   14篇
  2004年   5篇
  2002年   3篇
  2001年   3篇
  2000年   2篇
  1999年   6篇
  1998年   4篇
  1997年   1篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1979年   1篇
  1974年   1篇
  1964年   1篇
  1959年   1篇
排序方式: 共有192条查询结果,搜索用时 15 毫秒
171.
通过分别外掺Na2SO4(Na碱)和K2SO4(K碱)的方式,将低热水泥的总碱含量提高至0.8%,1.2%和1.6%,研究了不同碱含量和不同碱类型对低热水泥干燥收缩和自收缩的影响,并从水化动力学和孔结构方面,探究了不同碱含量和不同类型碱对低热水泥收缩性能的影响机制。结果表明,碱促进了低热水泥的干燥收缩和自收缩,这种促进作用不可忽略,且对自收缩影响时效短于干燥收缩,而以K2SO4形式存在的碱更易促进低热水泥干燥收缩和自收缩。基于水化动力学和孔结构研究,不同类型碱对低热水泥收缩性能的影响机制在于:碱促进了低热水泥结晶成核和晶体生长过程,细化了孔结构,增加了与收缩性能相关的孔分布,而以K2SO4形式存在的碱,能使这种促进作用和细化作用更加明显。该研究可为精细化提高混凝土耐久性提供数据支撑。  相似文献   
172.
赵芳霞  张振忠  郭世德 《铸造技术》2006,27(12):1311-1314
以氯化钯为催化剂,采用正交实验、TEM、XRD和粒度分析等手段,系统研究了纳米镍磷合金粉的化学镀法制备工艺。结果表明:反应温度、pH值、镍磷比、柠檬酸钠加入量、氯化钯加入量等制备工艺参数对镍磷合金粉产量都有一定影响,其显著性大小顺序为:反应温度>柠檬酸钠加入量>氯化钯加入量>pH值>镍磷比,上述因素对产量影响的规律不同。较优的制备工艺为:分散剂为OP-10,加入量0.004 g/L,反应温度为75℃,pH值为4;硫酸镍、次亚磷酸钠、柠檬酸钠、无水醋酸钠和氯化铅加入量分别为28、37.7、45、150、.001 g/L;在50 mL废镀液中加入浓度为0.1 g/L的催化剂氯化钯8 mL;制备镍磷合金粉的分散剂应选用加入量为0.004 g/L的OP-10。  相似文献   
173.
直流氢电弧蒸发法制备金属纳米Ni粉和Cu粉的研究   总被引:5,自引:2,他引:5  
采用自行设计的直流氢电弧等离子体蒸发设备,通过正交试验,系统研究了H2/Ar、电流和压力对纳米Ni粉和Cu粉制备产率、结构及粒度的影响。发现:(1)该设备能够制备出纳米级的Ni粉和Cu粉,且产率有了很大的提高,Ni粉最大产率提高了24倍,Cu粉的最大产率提高了203.7倍;(2)各因素对两种粉体制备产率影响的显著性顺序为:φ(H2)/φ(Ar)-电流-压力;对Ni粉平均粒径影响的显著性顺序为:φ(H2)/φ(Ar)-压力-电流;对Cu粉平均粒径影响的显著性顺序则为:压力-φ(H2)/φ(Ar)-电流;(3)所制备的纳米Ni粉和Cu粉为多晶型;Ni粉的平均粒径在20-65nm范围内;Cu粉平均粒径为23-141nm;制备的Ni粉中不含杂质,纯净度很高,但是Cu粉中含有一定量的CuO杂质;(4)设备内腔的冷却环境对控制极大粒度粉体的生成和粉体粒度分布具有重要影响。  相似文献   
174.
目的提高LED支架的性价比,减少SPCC钢表面镀银预镀铜工艺的镀液污染,简化现有的预镀镍-镀铜施镀工艺,提高预镀层质量。方法采用HEDP碱性无氰直接预镀铜方法来简化工艺,用单因素实验法,系统研究了电流密度、镀液pH、电镀温度、HEDP/Cu~(2+)摩尔比、电镀时间等参数,对镀层镀速、孔隙率及镀层表面质量的影响,并表征镀层的微观组织及镀层结合力。结果在阴极电流密度为1.41 A/dm~2,pH值为9.5,温度为50℃,HEDP/Cu~(2+)摩尔比为3.75:1(Cu~(2+)为10 g/L),时间为11 min的条件下,可获得镀速约为1.7 mg/(cm~2·min)的预镀铜层,且镀层与基体的结合力良好,无孔隙,呈良好的光亮/半光亮状的细晶镀层。结论与钢铁表面氰化镀铜及镀银前预镀铜工艺相比,推荐的HEDP直接预镀铜工艺的镀层质量好,可满足直接镀铜和镀银前预镀铜工艺要求,可有效减少镀液污染和简化施镀工艺,对SPCC钢的镀铜工艺改善具有较好的推广价值。  相似文献   
175.
采用水热法制备超细蛇纹石粉,利用X射线衍射(XRD)和透射电子显微镜(TEM)对样品的晶体结构和形貌进行表征;究了不同反应温度所制备粉体及其添加量对68#水乙二醇液压液摩擦学性能的影响,初步探讨抗磨减摩机理。结果表明:不同温度下水热合成的蛇纹石的微观结构、化学组成及晶型各不相同;200 ℃以下水热合成的产物是利蛇纹石、水镁石等的混合物,200℃以上合成的产物为中空管状纳米纤蛇纹石;采用200 ℃下制备的纤蛇纹石作为润滑添加剂,在其加入量(w)为0.06%时,水乙二醇液压液的综合摩擦学性能最优,摩擦因数、磨斑直径分别为0.0562和0.39 mm,较基础液压液分别减小了18.07%和33.90%;蛇纹石粉加入到液压液中能起到填平犁沟、修复磨痕表面的作用,从而实现抗磨和减摩的目的。  相似文献   
176.
以高能球磨法和直流氢电弧等离子蒸发法两种不同工艺制备纳米晶镍粉体,并结合预压烧结工艺制备了纳米晶镍块体试样,研究了纳米晶镍块体结构、形貌的变化.运用TEM技术观察了两种粉体的形貌,并给出了选区电子衍射图;运用XRD、Archimedes法等分析手段对纳米晶镍块体的致密度及晶粒尺寸进行测定,并对两种试样进行了对比分析,表征结果显示,随着烧结温度的升高,纳米晶镍块体试样的晶体尺寸增大,晶格应变减小,同时致密度增加;高能球磨试样晶粒生长速率和致密度升高速率比等离子蒸发试样的快.  相似文献   
177.
通过真空单辊甩带法成功制备了Mg81.53Zn18.19Y0.28合金急冷快速凝固薄带,采用XRF、XRD、SAD、SEM、显微硬度测量等分析方法系统研究了其凝固组织及显微硬度。研究结果表明:急冷快速凝固条件下,薄带的凝固组织为以hcp-Mg(Zn,Y)相+非晶相为基体,其中均匀弥散超细Mg7Zn3相;薄带的显微硬度值是其母合金的2.4倍,且有良好的脆性;并对产生的原因进行了初步探讨。  相似文献   
178.
为提高锂基润滑脂的摩擦学性能,以超细锡粉为润滑添加剂研究了粉体的加入方式、粒径、加入量及载荷变化对锂基润滑脂摩擦学性能的影响,并采用SEM、EDS等手段对钢球表面磨斑进行分析。结果表明,直接加入超细锡粉体制备润滑脂的摩擦学性能优于分散后加入锡粉体的锂基润滑脂;采用平均粒径为90 nm的超细锡粉、添加量为2%时,锂基润滑脂的摩擦学性能最优。其作用机理在于锡粉在钢球表面具有自修复作用。含超细锡粉的润滑脂更适合在高载荷下工作。  相似文献   
179.
为了进一步提高Ni-W-P合金镀层的硬度和耐蚀性,用脉冲电沉积法制备了(Ni-W-P)-TiO2复合镀层,并研究了镀液中TiO2加入量对镀层硬度和表面形貌的影响,且通过极化曲线和电化学阻抗谱研究了镀层在3.5%NaCl溶液中的耐蚀性能。结果表明,(Ni-W-P)-TiO2复合镀层的性能优于Ni-W-P镀层,而当镀液中TiO2质量浓度为6g/L时,复合镀层的硬度较高,表面形貌及耐蚀性能较优。自腐蚀电位较正,腐蚀电流密度较小,极化电阻较大,其交流阻抗谱对应的电阻值也较大。  相似文献   
180.
采用表面活性剂PEG-2000辅助溶胶-凝胶法制备了不同含量锶掺杂纳米La_(1-x)Sr_xMnO_3锌-空气电池催化剂。通过TG-DSC、XRD、FTIR、TEM和极化曲线等方法研究了催化剂La_(1-x)Sr_xMnO_3的结构和电催化性能。结果表明:所制备的La1-xS rxMnO_3为钙钛矿结构,其晶体成型温度在450℃左右、晶粒尺寸处于纳米级别。以La_(1-x)Sr_xMnO_3为催化剂制备空气电极的极化曲线特征表明:La_(0.8)Sr_(0.2)MnO_3的电催化性能最好,当极化电压为-600mV(vs.Hg/Hg O)时,氧还原反应极化电流密度可达0.235 A/cm~2,而相同条件下制备的不含锶纳米La MnO3催化剂氧还原反应极化电流密度仅为0.165 A/cm~2,电催化活性显著提升。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号