首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   9篇
  国内免费   10篇
化学工业   1篇
金属工艺   30篇
机械仪表   3篇
建筑科学   4篇
无线电   2篇
一般工业技术   6篇
冶金工业   27篇
  2023年   8篇
  2022年   4篇
  2021年   12篇
  2020年   3篇
  2019年   9篇
  2018年   8篇
  2016年   5篇
  2015年   7篇
  2014年   8篇
  2013年   3篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
排序方式: 共有73条查询结果,搜索用时 15 毫秒
61.
赵锴  杨忠民  王文涛  陈颖  曹燕光  李昭东 《钢铁》2021,56(2):117-125
 为通过调控碳含量获得形状记忆性能优异的铁基形状记忆合金,研究了3种不同碳含量对固溶时效态Fe-15Mn-4.5Si-10Cr-5Ni-C系形状记忆合金微观组织、力学性能及形状记忆效应的影响。结果表明,固溶时效态Fe-15Mn-4.5Si-10Cr-5Ni-(0.05~0.2)C合金的形状记忆效应随碳含量的增加呈现先增后减的趋势。这是由于一方面,随着碳含量的增加,碳原子的间隙固溶强化和第二相碳化物的沉淀析出强化提高奥氏体母相强度,抑制不可逆塑性变形的发生,有利于材料在受力时发生应力诱发奥氏体γ转变为ε马氏体(γ→ε),从而提高形状记忆效应。另一方面,全固溶温度随碳含量的增加而升高。由于全固溶温度的升高,固溶处理后得到的相对粗大的奥氏体晶粒造成奥氏体母相强度的降低。同时,随着碳含量的增加导致ε马氏体相变温度(Mεs)的降低,应力诱发相变过程受到抑制,不利于形状记忆效应。在不同影响机制的相互作用下,碳质量分数为0.091 8%固溶时效态试验合金的形状记忆性能最优。  相似文献   
62.
以薄板坯连铸连轧流程生产的合金工具钢75Cr1为原料,进行了冷轧和球化退火试验,并对不同状态下试验钢的显微组织、力学性能和球化效果进行了研究。结果表明:热轧态75Cr1的组织主要为片状珠光体,冷轧变形量为20%、40%的试验钢球化退火后的组织主要为铁素体+颗粒状渗碳体,两者的球化比例分别约70%和90%。与热轧原料相比,直接冷轧20%、40%后,试验钢的硬度值分别提高了65 HV10和85 HV10,而伸长率分别降低了2.7%和3.7%。在相同的原料条件下,随着冷轧变形量的增加,试验钢的硬度值提高,伸长率降低。与球化退火前相比,冷轧变形量为20%、40%的试验钢球化退火后,试验钢的硬度值分别降低了36 HV10和132 HV10,伸长率分别提高了0.6%和5.7%。  相似文献   
63.
利用OM、EBSD、HRTEM和Vickers硬度计等手段研究了冷却速率对Ti-V-Mo复合微合金钢组织转变、析出相及硬度的影响,阐明了(Ti,V,Mo)C在不同冷却速率下的析出规律及其对显微组织和硬度的作用机理。结果表明,当冷却速率低于20℃/s时,随着冷却速率的增加,析出相平均尺寸由13.2 nm逐渐减小至6.9 nm,铁素体平均晶粒尺寸由5.06 mm逐渐细化至2.97 mm,硬度呈先快速增大而后缓慢增大的趋势,铁素体的细晶强化和(Ti,V,Mo)C的沉淀强化是硬度升高的主要因素;冷却速率为20~30℃/s,其对晶粒细化和沉淀强化的影响效果已趋于饱和,硬度基本保持不变,此时Ti-V-Mo复合微合金钢的硬度具有最大值410 HV,屈服强度高达1090 MPa。Ti-V-Mo复合微合金钢的硬度y与冷却速率x符合指数衰减关系:y=-229exp(-x/5)+412。  相似文献   
64.
利用TEM,SEM及物理化学相分析法,研究了回火温度对高Ti微合金直接淬火高强钢显微组织和力学性能的影响.结果表明,随着回火温度的升高,抗拉曲线出现明显的转折点,抗拉强度先降低后升高,而屈服强度缓慢升高.回火温度为600℃时,实验钢具有最佳的综合力学性能;抗拉强度为1043 MPa,屈服强度为1020 MPa,延伸率为16%,-40℃冲击功为67.7 J.其主要原因是600℃时,纳米级的析出相数量最多,体积分数最大,分布最均匀.600℃回火时,实验钢的固溶强化和沉淀强化的强度增量分别约为149.82和171.72 MPa.  相似文献   
65.
 韧性是影响高速车轮运行安全的关键性能指标。为了阐明中碳珠光体型高速车轮钢的韧化机理,对夹杂物改性和组织韧化两方面进行了深入研究。研究结果表明,硫化物包裹氧化物的夹杂物改性提高了车轮钢的韧性。车轮钢中的氧化物夹杂容易在夹杂物与基体界面处产生裂纹,并向周围基体扩展;当氧化物被硫化物包裹后,裂纹仅在夹杂物本身产生,保护了周围基体。在w(Mn)=0.75%的成分体系下,当硫的质量分数提高到0.006%及以上时,硫化物在固相线温度以上析出,可以实现对氧化物的较好包裹,改善车轮钢的韧性;硫化物在车轮热加工过程中会发生回溶与再析出,破坏复合夹杂物的包裹效果,提高硫质量分数或降低热加工温度,可以提高复合夹杂物的热稳定性。奥氏体晶粒尺寸和先共析铁素体体积分数是车轮钢组织韧化的关键控制因素。细化奥氏体晶粒尺寸、提高铁素体体积分数,断口中解理面尺寸减小,韧性撕裂区增多。  相似文献   
66.
曾斌  汪净  梁亮  李昭东  雍岐龙 《钢铁》2023,58(1):161-169
框架锯已广泛应用于石材加工行业,框架锯条用钢是制备框架锯的必备材料,也是钢铁材料中的高附加值产品。采用国内自主设计的连续式淬火-回火热处理设备,拟开发目前国内外市场上未有使用的2.0 mm厚度薄型框架锯条用75Cr1高强度高韧性热处理钢带,以提高石材利用率。通过在连续热处理线上依次设定不同的加热炉奥氏体化温度、铅铋合金熔液温度、回火温度,采用材料试验机、洛氏硬度计、金相显微镜和扫描电镜研究三者对热处理钢带显微组织和力学性能的影响,探索出生产高性能框架锯条用材的最佳热处理工艺。结果表明,奥氏体化温度为930℃,铅铋合金熔液温度为250~315℃,回火温度为500~520℃,采用马氏体分级淬火,可制备出高性能的2.0 mm薄型75Cr1热处理钢带。此时,屈服强度为1 157~1 241 MPa,抗拉强度为1 275~1 368 MPa,伸长率为8.8%~13.8%,表面硬度为39.5HRC~42.5HRC,显微组织为回火屈氏体+少量贝氏体,晶粒尺寸极其细小均匀。通过与现有3.0 mm的厚规格高质量国外进口材进行显微组织与力学性能对比,所开发的2.0 mm新型薄规格材料可达到3.0 mm进口...  相似文献   
67.
通过对罩式退火卷粗晶缺陷分布、不同程度粗晶缺陷试样中FeTiP的析出和Ti-IF钢FeTiP析出溶解温度及晶粒长大行为的分析,找到了粗晶缺陷的成因,并得到了解决粗晶缺陷的方法.结果表明:780℃或略高的温度是晶粒粗化临界温度,FeTiP析出相细小粒子的溶解导致了析出相粒子分布状态发生明显变化,此为诱发晶粒异常长大导致粗...  相似文献   
68.
通过低成本成分设计,在控制轧制的基础上,分别采用直接淬火(DQ)、直接淬火+回火(DQ+T)以及再加热淬火+回火(RQ+T)工艺成功制得了抗拉强度1500 MPa级经济型低合金高强高韧钢。对比研究了DQ、DQ+T和RQ+T 3种工艺钢的微观组织和力学性能。结果表明:DQ工艺钢的微观组织为板条马氏体+少量铁素体及残留奥氏体的复相组织,其抗拉强度和屈服强度分别为1750 MPa和1300 MPa,-40℃下冲击吸收功为37 J。200℃回火1 h后,试验钢位错密度降低,大量细小ε碳化物在板条内析出。DQ+T工艺钢屈服强度达到1400 MPa,-40℃下冲击功为43 J。试验钢直接淬火后再加热至880℃,获得了平均晶粒尺寸为5.7μm的细小等轴奥氏体。相比于DQ及DQ+T工艺钢,RQ+T工艺钢获得了更高的韧性,冲击功达到56 J。研究发现,未溶的(Nb,Ti)(C,N)粒子能有效抑制奥氏体晶粒长大。组织细化及残留奥氏体是RQ+T工艺钢获得高韧性最主要的原因。  相似文献   
69.
利用光学显微镜、扫描电子显微镜和拉伸试验机等设备,研究了热处理工艺对Ti55531钛合金显微组织和拉伸性能的影响。结果表明:随着固溶温度的升高(790~810℃),合金中初生α相(αp)的含量减少,合金强度升高而塑性降低;随着时效温度的升高(500~600℃),合金中次生α相(αs)变粗变长,合金强度降低而塑性升高;随着550℃时效时间的延长(2~8h),合金中析出的αs相含量增多,强度升高,塑性有所降低。  相似文献   
70.
通过OM、SEM、TEM和维氏硬度计等手段研究了不同等温冷却时间对Ti-V-Mo复合微合金钢组织转变、析出行为及硬度的影响,探讨了影响硬度变化的因素。结果表明,Ti-V-Mo复合微合金钢奥氏体化后在630 ℃等温冷却0~3 h,随着等温时间的延长,基体中的铁素体比例不断增加而马氏体和贝氏体比例逐渐降低,硬度呈现先升高再趋于平稳,再升高至其最大值,最后略有下降。60~1200 s时,硬度出现平台是因为纳米级(Ti, V, Mo)C粒子的沉淀强化效果能够弥补相变导致基体软化造成的硬度损失;3600 s时,硬度达到最大值为457 HV,此时纳米级(Ti, V, Mo)C粒子产生的沉淀强化效果最佳。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号