首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   156篇
  免费   18篇
  国内免费   10篇
电工技术   31篇
综合类   8篇
化学工业   10篇
金属工艺   14篇
机械仪表   9篇
建筑科学   16篇
矿业工程   10篇
能源动力   4篇
轻工业   13篇
石油天然气   7篇
无线电   10篇
一般工业技术   16篇
冶金工业   9篇
原子能技术   8篇
自动化技术   19篇
  2024年   4篇
  2023年   8篇
  2022年   15篇
  2021年   3篇
  2020年   6篇
  2019年   13篇
  2018年   14篇
  2017年   7篇
  2015年   5篇
  2014年   12篇
  2013年   5篇
  2012年   3篇
  2011年   3篇
  2010年   1篇
  2009年   15篇
  2008年   6篇
  2007年   11篇
  2006年   2篇
  2005年   8篇
  2004年   9篇
  2003年   6篇
  2002年   5篇
  1999年   3篇
  1998年   5篇
  1997年   2篇
  1993年   1篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1985年   1篇
  1984年   1篇
  1980年   1篇
排序方式: 共有184条查询结果,搜索用时 15 毫秒
181.
富镍LiNi1-x-yCoxMnyO2(NCM)/LiNi1-x-yCoxAlyO2(NCA)三元层状正极材料因其比容量高、成本低等优势,被认为是最具前景的锂电池正极材料之一。但由于其对空气中H2O和CO2的敏感效应,表面易生成残碱化合物LiOH/Li2CO3(RLCs),而RLCs的存在会急剧恶化富镍三元材料热稳定性能和电化学性能,致使其大规模商业化应用面临严峻挑战。本文首先综述了RLCs的组成和形成机理,并系统概括RLCs引起的微裂纹扩展、Li+/Ni2+混排、界面副反应和晶格相变等材料失效机制以及常用RLCs去除策略;重点阐述去离子水洗涤、无水乙醇洗涤、溶液洗涤及后续一体化处理等三种RLCs去除工艺的研究进展及对材料结构、形貌及电化学性能的影响机理。最后,归纳总结上述溶液洗涤去...  相似文献   
182.
喷射闪蒸与热空气掺混蒸发(FME)结合是实现含盐废水深度脱盐的有效方法之一。本文搭建了喷射闪蒸-横流掺混蒸发实验系统,结合PIV和Malvern激光粒度仪对FME流场中液滴群的运动、蒸发特性开展了实验研究。实验中掺混风温为104.7~145.3℃、风速为10~17 m·s-1;液侧液滴初始盐质量分数为0~0.15,温度为20.0~132.0℃,喷射压力为0.5~1.2 MPa。FME中喷射闪蒸主要影响雾化破碎区,而掺混蒸发主要影响蒸发区。液滴群初始粒径随喷射压力或质量分数的提高趋于均匀,而随液滴温度的升高先趋于均匀而后均匀性变差。气液间的动量和能量交换主要发生在蒸发区内的水平方向;定义液滴沿水平方向截面平均速度为FME特征速度,该特征速度随掺混距离的增大先陡增后缓增,而在相同掺混距离处,该特征速度随掺混风温、风速或喷射压力的增大而增大;液滴群的Sauter平均直径沿掺混方向不断减小;增加掺混风温、提高掺混风速、增大喷射压力是强化FME蒸发的有效手段。根据实验结果计算了液滴群表面平均传热系数,并给出了该传热系数的实验关联式。在本文研究范围内,其计算值与实验值的主体误...  相似文献   
183.
本文研究了不同窖泥对特香型基础酒总酸、总酯、风味物质骨架成分含量及感官特征等的影响。结果表明,不同窖泥处理的基酒样品之间的总酸、总酯及酸、酯、醇、醛等微量物质成分含量差异显著(P<0.05),且营养窖泥组普遍高于其他处理组;不同窖泥样品的感官评价得分差异不显著(P>0.05);通过主成分综合评价分析,三组样品得分排名为:营养窖泥组>简易窖泥组>CK组。  相似文献   
184.
考察了焙烧温度与时间对废旧三元锂离子电池电极混料可浮性的影响,并通过分析焙烧前后的粒度分析、热重分析以及X射线光电子能谱分析(XPS)阐释了其影响机制。结果表明:焙烧可以有效分解聚偏氟乙烯(PVDF)粘结剂与残留电解质,从而消除其对正负极颗粒表面的覆盖,显化正极金属化合物与负极石墨间的表面亲疏水性差异,提高浮选效果;500℃焙烧60min的条件下达到了最好的综合效果,此时电极粉料的烧失量为13.24%,正、负极材料的产率分别达到了58.97%和27.79%,灰分分别为94.21%和13.94%,贵金属(Li、Ni、Co、Mn)综合回收率分别为94.04%和5.96%,品位分别为39.55%和5.32%。热重分析表明,PVDF的主要分解温度区间为430~580℃,而当温度超过580℃后,则主要以石墨的燃烧分解为主。XPS分析进一步展示了PVDF和残留电解液的分解特性,且表明在焙烧温度达到600℃后,尽管PVDF的分解更为彻底,但同时造成了负极石墨材料的大量烧失。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号