首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   171篇
  免费   5篇
  国内免费   10篇
电工技术   2篇
综合类   7篇
化学工业   5篇
金属工艺   121篇
机械仪表   3篇
建筑科学   10篇
矿业工程   6篇
武器工业   10篇
一般工业技术   16篇
冶金工业   5篇
自动化技术   1篇
  2023年   2篇
  2022年   2篇
  2021年   3篇
  2020年   3篇
  2019年   6篇
  2018年   1篇
  2016年   1篇
  2015年   2篇
  2014年   6篇
  2013年   4篇
  2012年   12篇
  2011年   20篇
  2010年   10篇
  2009年   8篇
  2008年   5篇
  2007年   16篇
  2006年   13篇
  2005年   11篇
  2004年   12篇
  2003年   7篇
  2002年   4篇
  2001年   11篇
  2000年   12篇
  1999年   4篇
  1998年   3篇
  1997年   4篇
  1996年   3篇
  1992年   1篇
排序方式: 共有186条查询结果,搜索用时 15 毫秒
171.
张建新  陈昊  郭学锋 《矿冶工程》2013,33(3):107-109
将铸态Mg-5Sn-1.5Al-1Zn-0.8Si镁合金进行单向挤压和往复挤镦变形, 采用OM、SEM等分析合金组织, 采用拉伸实验测定合金力学性能。结果表明: 单向挤压组织中的合金相分布较均匀, 其晶粒比铸态合金的晶粒细小, 挤压态试样的抗拉强度、延伸率分别比铸态合金提高31%和11.9%。相对于单向挤压工艺, 往复挤镦时挤压力明显增大, 与原始铸态和单向挤压试样相比, 往复挤镦合金的晶粒更细小, 组织更均匀, 其抗拉强度、延伸率比铸态分别提高106%和270%。  相似文献   
172.
快速凝固技术是开发新型镁合金材料、扩展镁合金在工程材料中应用的重要且具有发展前途的制备技术.从镁合金快速凝固的基本原理工艺,以及所获得的快速凝固镁合金的组织及性能特征等方面,阐述了现阶段镁合金快速凝固的研究现状;分析了快速凝固镁合金的主要强化机理及其与常规合金的区别,并就存在的问题进行了总结.  相似文献   
173.
Mg68Zn28Y4 alloys with stable icosahedral quasicrystals (Zn60Mg30Y10) were prepared by cast method. By simulating the environment of ocean, the alloy was eroded in 3.5% (mass fraction) NaCl for 2, 4 and 30 h. The microstructures of the samples and eroded alloys were analyzed by OM and SEM. The compositions and the quasiperiodic structures were identified respectively by EDS and TEM. And the corrosion potential and corrosion current density before and after immersion were measured by potentiodynamic polarization measurements in 3.5% NaCl. The results show that I-phases grow in the mode of conglomeration, piling and transfixion. The Mg7Zn3 matrix and α(Mg) solid solution are eroded badly, while W-phase is eroded partially. At the same time, the I-phases exhibit excellent corrosion resistance property. The resistance to corrosion of Mg68Zn28Y4 alloy is improved by increasing exposed I-phases. With adding element Y to Mg68Zn32 alloy, the corrosion current is decreased by one order of magnitude. And after the immersion of as-cast Mg68Zn28Y4 alloy for 30 h, the corrosion current density is reduced by two orders of magnitude compared with that of uneroded Mg68Zn32 alloy.  相似文献   
174.
高强高韧合成球墨铸铁的组织及力学性能   总被引:1,自引:1,他引:0  
以废钢为主要原材料(20%生铁+20%回炉料+60%废钢),使用中频感应电炉熔炼,采用中间加入和镜面加入联合增碳方式,制备了合成球墨铸铁QT450-23铸件。合成铸铁球化级别1级,球化率95%,石墨圆整,球径10~20μm,基体为100%铁素体。合成铸铁抗拉强度为450MPa,伸长率为23.3%。在高温组织中,奥氏体枝晶发达,显著提高材料的冲击韧性,V型缺口冲击试样常温冲击韧性为18.4 J/cm2,是相同成分和工艺条件下,传统生铁为主配方球铁的2倍。  相似文献   
175.
Zr55Cu30Al12Ni3非晶超薄箔材的快速凝固焊接   总被引:4,自引:0,他引:4  
应用微型储能焊机实现了厚度为25-35 μm的Zr55Cu30Al12Ni3非晶箔材的快速凝固连接.XRD测试表明,接头仍为非晶结构.计算的接头冷却速率高达106K/s,远大于形成锫基非晶合金的临界冷却速率,有效地抑制了接头区的晶化.接头尺寸微小,直径为60-90μm,未产生气孔、夹杂等焊接缺陷.接头剪切强度高达1141 MPa.高的电阻率特性使非晶合金的焊接能量明显低于晶态合金.  相似文献   
176.
等通道转角挤压(ECAP)是一种超细晶制备技术.可细化合金组织,改善材料性能。本文研究发现.ECAP纯铝L2,抗拉强度随挤压次数的增加而增加.8道次左右达到饱和。伸长率经1次挤压后大幅度下降,由40%下降至15%,4或5道次时仲长率有所增加。硬度随挤压次数的增加而增加.在3~4道次达到饱和。纯铝L2原始晶粒大小为1mm的近等轴状晶,ECAP后.随挤压道次的增加,向细小等轴晶转变.至8道次后.晶粒大小约为1μm。  相似文献   
177.
变形温度、变形速度和变形时工件的应力状态对球铁高温变形起着重要作用。在纯扭条件下,在不同湿度和变形速率下对铸铁型材进行了试验研究,并在950℃不同变形速率下与45#钢和低铬白口铁进行了比较。结果表明,在试验温度范围内(850~1000℃),提高变形温度有利于球铁变形,得出0.435S-1为本试验条件下球铁的特征变形速率  相似文献   
178.
今年以来,通渭县公安局消防科紧紧围绕“内强素质,外树形象”这个主题,立足本职,紧密结合“窗口”特点,积极开展“为人民服务,树公安新风”和学习天津消防的活动,已初见成效。至目前,共接警参加火灾扑救3次,实施消防监督90余人(次),消防审核11项,消防宣传3次,举办消防培训班2次,上门服务16次,研究解决消防疑难问题30余条。最近,他们向社会各界发放了40份《消防监督管理社会综合调查表》,据调查反馈,群众对消防工作满意率达98%。  相似文献   
179.
将铸态Mg92.5Zn6.4Y1.1镁合金往复挤压2,4,8,12不同道次,然后分别正挤压制成φ12mm的棒材.采用OM,XRD及DTA研究了往复挤压不同道次镁合金的组织和力学性能.研究表明,铸态Mg92.5Zn6.4Y1.1镁合金往复挤压后,组织得到显著细化,力学性能得到大幅度提高,获得了高强韧镁合金.2道次后,晶粒约5μm,拉伸强度超过300MPa,伸长率高达20%.继续增加往复挤压道次,晶粒细化和拉伸性能提高均不明显,当往复挤压12道次时,拉伸强度明显降低,而伸长率达到23%.Mg92.5Zn6.4Y1.1镁合金的伸长率大幅度提高归因于在往复挤压过程中,铸态组织中的缩松、缩孔等缺陷闭合和成分偏析非均匀相的分布均匀化,以及晶粒的破碎、回复和动态再结晶所引起的晶粒细化及材料的流动,最终获得完全致密、细小而均匀的等轴晶组织.  相似文献   
180.
利用快速凝固和往复挤压制备细晶ZK60合金,并研究合金的组织与力学性能。结果表明,快速凝固薄带晶粒尺寸为1~8μm,2道次往复挤压后,合金晶粒尺寸为3μm,大量10-50 nm的颗粒从基体析出。随着挤压道次增加,沉淀颗粒增多,晶粒未进一步细化;2道次挤压后,合金抗拉强度高达319 MPa;屈服强度随挤压道次增加而增加,经6道次挤压,屈服强度为253 MPa,伸长率和硬度随挤压道次增加变化不大,分别为(7±1)%和(77±1)HV5。力学性能好归因于晶粒细化和弥散分布在基体上细小颗粒的强化作用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号