首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   196篇
  免费   10篇
  国内免费   6篇
电工技术   4篇
化学工业   38篇
金属工艺   13篇
机械仪表   16篇
建筑科学   19篇
能源动力   9篇
轻工业   18篇
水利工程   6篇
无线电   26篇
一般工业技术   33篇
冶金工业   6篇
自动化技术   24篇
  2023年   2篇
  2022年   4篇
  2021年   15篇
  2020年   13篇
  2019年   11篇
  2018年   28篇
  2017年   10篇
  2016年   10篇
  2015年   7篇
  2014年   23篇
  2013年   22篇
  2012年   14篇
  2011年   15篇
  2010年   8篇
  2009年   11篇
  2008年   4篇
  2007年   4篇
  2006年   5篇
  2005年   2篇
  2004年   1篇
  1998年   1篇
  1997年   1篇
  1973年   1篇
排序方式: 共有212条查询结果,搜索用时 15 毫秒
21.
Recently, renewable energy resources and their impacts have sparked a heated debate to resolve the Australian energy crisis. There are many projects launched throughout the country to improve network security and reliability. This paper aims to review the current status of different renewable energy resources along with their impacts on society and the environment. Besides, it provides for the first time the statistics of the documents published in the field of renewable energy in Australia. The statistics include information such as the rate of papers published, possible journals for finding relative paper, types of documents published, top authors, and the most prevalent keywords in the field of renewable energy in Australia. It will focus on solar, wind, biomass, geothermal and hydropower technologies and will investigate the social and environmental impacts of these technologies.  相似文献   
22.
The aim of this study was to determine the chemical composition and the in vitro antimicrobial effects of seed essential oil of Ferulago angulata. The oil analyses by GC and GC/MS resulted in the identification of 39 compounds representing 91.07% of the oil. The major constituents were (Z)-β-ocimene (19.93%), α-pinene (15.50%), p-cymene (7.67%), sabinene (7.49%), β-phellandrene (5.5%), and α-phellandrene (4.95%). The oil was also screened for its antimicrobial properties against six bacteria (Erwinia amylovora, Xanthomonas oryzae, Pseudomonas syringae, Pectobacterium carotovorum, Ralstonia solanacearum, Bacillus thuringiensis) and six fungi (Alternaria alternata, Culvularia fallax, Macrophomina phaseolina, Fusarium oxysporum, Cytospora sacchari, Colletotrichum tricbellum). According to the results of antibacterial activity, B. thuringiensis (with 8 µL mL?1 minimal inhibitory concentration (MIC) and 15 µL mL?1 minimum bactericidal concentration (MBC)) was the most sensitive bacterium; P. carotovorum and R. solanacearum (with 20 µL mL?1 MIC and 30< MBC) were the most resistant bacteria. Additionally, a broad differentiation against all of the tested fungi showed that the most susceptible and resistant fungi after 6 days at the highest concentration (800 µL L?1) were F. oxysporum (100.0 ± 0.00%) and C. tricbellum (52.50 ± 1.67%) of growth inhibition, respectively.  相似文献   
23.
To compare the antioxidant and antiradical activity of Amygdalus communis L. hulls and shells phenolic extracts in different genotypes, 18 A. communis L. genotypes were selected from those in Qooshchi, Qalgachi, Qovarchin Qale, Najaf Abad, Jamal Abad, Kahriz, Sfahlan of West and East Azerbayjan provinces of Iran in 2007. The fruits of these almonds were collected, their hulls and shells dried, ground and then methanolic extracts prepared from these hulls and shells. Total phenolic content was determined using the Folin–Ciocalteu (F–C) method. The extracts’ reducing power and scavenging capacity for radical nitrite, hydrogen peroxide and superoxide were evaluated. Significant differences were found in phenolic content of hulls and shells among various genotypes, radical scavenging capacity percentage varied significantly among genotypes and their hulls and shells. S3-7 genotype with the highest phenolic content and antioxidant activity in its hulls represents a valuable genotype for procuring antioxidant phenolic compounds.  相似文献   
24.
In this study condensation heat transfer on a cold inclined circular cylinder due to natural convection for various conditions is investigated experimentally. The cylinder is placed in an isolated test room to permit pure natural circulation of ambient air. Ambient temperature and humidity of the test room are controlled by a refrigeration cycle and humidifying. The ambient relative air humidity changed in the range of 30 to 50% and temperature from 25 to 35 °C. The ethylene‐glycol/water solution is used as a refrigerant to control and keep the temperature of the test section at a constant value. The cold surface temperature is varied from 2 to 6 °C. The condensation rate and heat flux are found to depend mainly on time, temperature difference between ambient air and cold surface, ambient relative humidity, and tube inclination. Results are plotted for various conditions with respect to time. The experimental results are used to propose a correlation to predict the condensate mass flow rate for free convection heat transfer. © 2012 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21015  相似文献   
25.
Taguchi robust design was used for optimization of direct precipitation reaction conditions in order to simple and fast synthesis of manganese carbonate nanoparticles. Manganese carbonate nanoparticles were synthesized in this study by addition of manganese ion solution to the aqueous carbonate reagent. Effects of several reaction variables, such as manganese and carbonate concentrations, flow rate of reagent addition and temperature on particle size of prepared manganese carbonate were investigated. The significance of these parameters in tuning the size of manganese carbonate particles was quantitatively evaluated by analysis of variance. The results showed that manganese concentration and carbonate concentration in the solutions and also flow rate have significant effects in preparation of manganese carbonate nanoparticles. Also, optimum conditions for synthesis of manganese carbonate nanoparticles via precipitation reaction were proposed. Analysis of variance showed that under the optimum condition, the size of manganese carbonate nanoparticles will be about 54 ± 12 nm. In another part of this study, solid state thermal decomposition reaction of precursor was used for preparation of Mn2O3 nanoparticles. The results showed that Mn2O3 nanoparticles synthesized via thermal decomposition of manganese carbonate nanoparticles have average size of 90 nm.  相似文献   
26.
Monitoring and improving the product reliability is of main concern in a large number of multistage manufacturing processes. The process output is commonly inspected under limited load conditions, and the tensile strength of reliability‐related quality characteristic is measured. This brings about censored observations that make the direct application of traditional control charts futile. The monitoring procedure becomes aggravated when the influence of variable competing risk is pronounced during the conducted test. To deal with this critical issue, we propose a regression‐adjusted cumulative sum (CUSUM) chart to effectively monitor a quality characteristic that may be right censored because of both fixed and variable competing risks. Moreover, two exponentially weighted moving average (EWMA) control charts on the basis of conditional expected values are devised to detect decreases in the tensile mean. The comparison of the three competing monitoring schemes confirms the superiority of the regression‐adjusted CUSUM procedure. Not only is the proposed control chart applicable to manufacturing processes with the aim of monitoring reliability‐related quality variables, it is also appropriate for monitoring similar quality measurements in service operations such as survivability measures in healthcare services. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
27.
Effect of temperature on hygroscopic thickness swelling rate of lignocellolusic fillers/HDPE (high density polyethylene) composites was investigated. The composites were manufactured using a dry blend/hot press method. In this method, powder of plastic and dried powder of lignocellolusic material were mixed in high‐speed mixer and then the mixed powder were pressed at 190°C. Lignocellolusic fillers/HDPE composites panels were made from virgin and recycled HDPE (as plastic) and wood sawdust and flour of rice hull (as filler) at 60% by weight filler loadings. Nominal density and dimensions of the panels were 1 g/cm3 and 35 × 35 × 1 cm3, respectively. Thickness swelling rate of manufactured wood plastic composites (WPCs) were evaluated by immersing them in water at 20, 40, and 60°C for reaching a certain value where no more thickness was swelled. A swelling model developed by Shi and Gardner [Compos. A, 37 , 1276 (2006)] was used to study the thickness swelling process of WPCs, from which the parameter, swelling rate parameter, can be used to quantify the swelling rate. The results indicated that temperature has a significant effect on the swelling rate. The swelling rate increased as the temperature increased. The swelling model provided a good predictor of the hygroscopic swelling process of WPCs immersed in water at various temperatures. From the activation energy values calculated from the Arrhenius plots, the temperature had less effect on the thickness swelling rate for the composites including wood sawdust compared with the rice hull as filler and the composites including recycled compared with the virgin HDPE as plastic. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   
28.
For the first time a novel, simple and facile approach is described to construct highly stable glucose oxidase (GOx) multilayer onto glassy carbon (GC) electrode using thiourea (TU) as a covalent attachment cross-linker. The layer by layer (LBL) attachment process was confirmed by cyclic voltammetry, electrochemical impedance spectroscopy and Fourier transform infrared reflection spectroscopy (FT-IR-RS) techniques. Immobilized GOx shows excellent electrocatalytic activity toward glucose oxidation using ferrocenemethanol as artificial electron transfer mediator and biosensor response was directly correlated to the number of bilayers. The surface coverage of active GOx per bilayer, heterogeneous electron transfer rate constant (ks) and Michaelis–Menten constant (KM), of immobilized GOx were 1.50 × 10−12 mol cm−2, 9.2 ± 0.5 s−1 and 3.42(±0.2) mM, respectively. The biosensor constructed with four-bilayers of TU/GOx showed good stability, high reproducibility, long life-time, fast amperometric response (5 s) with the high sensitivity of 5.73 μA mM−1 cm−2 and low detection limit of 6 μM at concentration range up to 5.5 mM.  相似文献   
29.
A simple and sensitive electrochemical sensor based on nickel oxide nanoparticles/riboflavin-modified glassy carbon (NiONPs/RF/GC) electrode was constructed and utilized to determine H2O2. By immersing the NiONPs/GC-modified electrode into riboflavin (RF) solution for a short period of time (5–300 s), a thin film of the proposed molecule was immobilized onto the electrode surface. The modified electrode showed stable and a well-defined redox couples at a wide pH range (2–10), with surface-confined characteristics. Experimental results revealed that RF was adsorbed on the surface of NiONPs, and in comparison with usual methods for the immobilization of RF, such as electropolymerization, the electrochemical reversibility and stability of this modified electrode has been improved. The surface coverage and heterogeneous electron transfer rate constants (k s) of RF immobilized on a NiO x –GC electrode were approximately 4.83 × 10?11 mol cm?2, 54 s?1, respectively. The sensor exhibits a powerful electrocatalytic activity for the reduction of H2O2. The detection limit, sensitivity and catalytic rate constant (k cat) of the modified electrode toward H2O2 were 85 nM, 24 nA μM?1 and 7.3 (±0.2) × 103 M?1 s?1, respectively, at linear concentration rang up to 3.0 mM. The reproducibility of the sensor was investigated in 10 μM H2O2 by amperometry, the value obtained being 2.5 % (n = 10). Furthermore, the fabricated H2O2 chemical sensor exhibited an excellent stability, remarkable catalytic activity and reproducibility.  相似文献   
30.
We introduce Silicon/indium arsenide (Si/InAs) source submicron-device structure in order to minimize the impact of floating body effect on both the drain breakdown voltage and single transistor latch in ultra thin SOI MOSFETs. The potential barrier of valence band between source and body reduces by applying the Indium Arsenide (InAs) layer at the source region. Therefore, we can improve the drain breakdown by suppressing the parasitic NPN bipolar device and the hole accumulation in the body. As confirmed by 2D simulation results, the proposed structure provides the excellent performance compared with a conventional SOI MOSFET thus improving the reliability of this structure in VLSI applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号