首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   180篇
  免费   4篇
  国内免费   22篇
电工技术   3篇
化学工业   31篇
金属工艺   24篇
机械仪表   9篇
建筑科学   7篇
轻工业   19篇
水利工程   6篇
无线电   16篇
一般工业技术   23篇
冶金工业   50篇
自动化技术   18篇
  2023年   1篇
  2022年   3篇
  2021年   1篇
  2020年   2篇
  2019年   5篇
  2018年   4篇
  2017年   2篇
  2016年   5篇
  2015年   5篇
  2014年   3篇
  2013年   4篇
  2012年   13篇
  2011年   23篇
  2010年   8篇
  2009年   6篇
  2008年   6篇
  2007年   10篇
  2006年   11篇
  2005年   4篇
  2004年   5篇
  2003年   3篇
  2002年   5篇
  2001年   4篇
  2000年   8篇
  1999年   7篇
  1998年   5篇
  1997年   3篇
  1996年   15篇
  1995年   4篇
  1994年   6篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   5篇
  1987年   2篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1980年   1篇
  1978年   1篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有206条查询结果,搜索用时 15 毫秒
201.
For molecules to be used as components in molecular machines, methods that couple individual molecules to external energy sources and that selectively excite motion in a given direction are required. Significant progress has been made in the construction of molecular motors powered by light and by chemical reactions, but electrically driven motors have not yet been built, despite several theoretical proposals for such motors. Here we report that a butyl methyl sulphide molecule adsorbed on a copper surface can be operated as a single-molecule electric motor. Electrons from a scanning tunnelling microscope are used to drive the directional motion of the molecule in a two-terminal setup. Moreover, the temperature and electron flux can be adjusted to allow each rotational event to be monitored at the molecular scale in real time. The direction and rate of the rotation are related to the chiralities of both the molecule and the tip of the microscope (which serves as the electrode), illustrating the importance of the symmetry of the metal contacts in atomic-scale electrical devices.  相似文献   
202.
The role of graphene in enabling deoxidation of silver nanostructures, thereby contributing to enhance plasmonic properties and to improve the temporal stability of graphene/silver hybrids for both general plasmonic and meta‐materials applications, as well as for surface enhanced Raman scattering (SERS) substrates, is demonstrated. The chemical mechanism occurring at the graphene–silver oxide interface is based on the reduction of silver oxide triggered by graphene that acts as a shuttle of electrons and as a kind of catalyst in the deoxidation. A mechanism is formulated, combining elements of electron transfer, role of defects in graphene, and electrochemical potentials of graphene, silver, and oxygen. Therefore, the formulated model represents a step forward from the simple view of graphene as barrier to oxygen diffusion proposed so far in literature. Single layer graphene grown by chemical vapor deposition is transferred onto silver thin films, a periodic silver fishnet structure fabricated by nanoimprint lithography, and onto silver nanoparticle ensembles supporting a localized surface plasmon resonance in the visible range. Through the study of these nanostructured graphene/Ag hybrids, the effectiveness of graphene in preventing and reducing oxidation of silver plasmonic structures, keeping silver in a metallic state over months at air exposure, is demonstrated. The enhanced and stable plasmonic properties of the silver‐fishnet/graphene hybrids are evaluated through their SERS response for detecting benzyl mercaptane.  相似文献   
203.
Site evaluation for bioremediation of chlorinated ethenes may need treatability studies to assess the reductive dechlorination potential of vinyl chloride (VC). Dehalogenation of vinyl bromide (VB) was investigated as a surrogate measurement for the dechlorination potential of VC. VB dehalogenation rates and kinetics were studied and compared with those of VC by a methanogenic reductive dechlorinating enrichment culture that was dominated by Dehalococcoides species and by microcosms from two chloroethene-contaminated sites. The enrichment culture dehalogenated VB to ethene at higher rates than VC at similar concentrations. VB was dehalogenated with a higher enzyme affinity than was VC, as indicated by their half-velocity constants, 240 +/- 150 and 21 +/- 8 microM, for VC and VB, respectively. Cross-inhibition study exhibited some evidence for competitive inhibition between VC and VB, suggesting that their degradation might be catalyzed by the same enzyme in the culture. Laboratory microcosm studies using subsurface soil and groundwater from two contaminated sites demonstrated that the production of the reductive dehalogenation product (ethene) could be detected faster with VB as a substrate than with VC. As a result, a substantially shorter (up to 5-10 times) incubation time would be required to detect the same level of reductive dehalogenation activity using VB as a surrogate for VC in treatability assessments.  相似文献   
204.
Polyphosphate (poly-P), polyhydroxyalkanoates (PHAs), and glycogen are the key functionally relevant intracellular polymers involved in the enhanced biological phosphorus removal (EBPR) process. Further understanding of the mechanisms of EBPR has been hampered by the lack of cellular level quantification tools to accurately measure the dynamics of these polymers during the EBPR process. In this study, we developed a novel Raman microscopy method for simultaneous identification and quantification of poly-P, PHB, and glycogen abundance in each individual cell and their distribution among the populations in EBPR. Validation of the method was demonstrated via a batch phosphorus uptake and release test, in which the total intracellular polymers abundance determined via Raman approach correlated well with those measured via conventional bulk chemical analysis (correlation coefficient r = 0.8 for poly-P, r = 0.94 for PHB, and r = 0.7 for glycogen). Raman results, for the first time, clearly showed the distributions of microbial cells containing different abundance levels of the three intracellular polymers under the same environmental conditions (at a given time point), indicating population heterogeneity exists. The results revealed the intracellular distribution and dynamics of the functionally relevant polymers in different metabolic stages of the EBPR process and elucidated the association of cellular metabolic state with the fate of these polymers during various substrates availability conditions.  相似文献   
205.
206.
Against the backdrop of the COVID-19 pandemic and drawing on literature from change management, internal communication and cognitive appraisal theory, this study provided accounts of how transparent communication during organizational change affects employees' cognitive appraisals of the change, behavioural reactions to the change, and subsequently, turnover intentions. Our findings of 414 full-time US employees revealed that transparent internal communication is positively related to employees' challenge appraisal of the change, which, in turn, is related to change compliance and championing. In addition, transparent communication is negatively associated with threat appraisal of the change, which in turn is connected to lower change compliance. Further, employees' turnover intention was negatively associated with their compliance and championing for the change. This study has made several contributions to internal communication scholarship, appraisal theory and change management literature. We also offer several suggestions to improve communication during organizational change periods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号