Recharge to the aquifer leads to the growth of a groundwater mound. Therefore, for the proper management of an aquifer system, an accurate prediction of the spatio-temporal variation of the water table is very essential. In this paper, a problem of groundwater mound formation in response to a transient recharge from a rectangular area is investigated. An approximate analytical solution has been developed to predict the transient evolution of the water table. Application of the solution and its sensitivity to the variation of the recharge rate have been illustrated with the help of a numerical example.Notations
a =
Kh/e [L2/T]
-
A =
aquifer's extent in the x-direction [L]
-
B =
aquifer's extent in the y-direction [L]
-
e =
effective porosity
-
h =
variable water table height [L]
-
h0=
initial water table height [L]
-
h =
weighted mean of the depth of saturation [L]
-
K =
hydraulic conductivity [L]
-
m, n =
integers
-
P =
constant rate of recharge [L/T]
-
P1+P0=
initial rate of transient recharge [L/T]
-
P1=
final rate of transient recharge [L/T]
-
s =
h2–h
02
[L2]
-
t =
time of observation [T]
-
x,y =
space coordinates
-
x2–x1=
length of recharge area in x-direction [L]
-
y2–y1=
width of recharge area in y-direction [L]
-
z =
decay constant [T-1] 相似文献
In a wireless sensor network (WSN), the data transmission technique based on the cooperative multiple‐input multiple‐output (CMIMO) scheme reduces the energy consumption of sensor nodes quite effectively by utilizing the space‐time block coding scheme. However, in networks with high node density, the scheme is ineffective due to the high degree of correlated data. Therefore, to enhance the energy efficiency in high node density WSNs, we implemented the distributed source coding (DSC) with the virtual multiple‐input multiple‐output (MIMO) data transmission technique in the WSNs. The DSC‐MIMO first compresses redundant source data using the DSC and then sends it to a virtual MIMO link. The results reveal that, in the DSC‐MIMO scheme, energy consumption is lower than that in the CMIMO technique; it is also lower in the DSC single‐input single‐output (SISO) scheme, compared to that in the SISO technique at various code rates, compression rates, and training overhead factors. The results also indicate that the energy consumption per bit is directly proportional to the velocity and training overhead factor in all the energy saving schemes. 相似文献
In Internet of Things (IoT), the massive connectivity of devices and enormous data on the air have made information susceptible to different type of attacks. Cryptographic algorithms are used to provide confidentiality and maintain the integrity of the information. But small size, limited computational capability, limited memory, and power resources of the devices make it difficult to use the resource intensive traditional cryptographic algorithms for information security. In this scenario it becomes impertinent to develop lightweight security schemes for IoT. A thorough study on the lightweight cryptography as a solution to the security problem of resource-constrained devices in IoT has been presented in this work. This paper is a comprehensive attempt to provide an in-depth and state of the art survey of available lightweight cryptographic primitives till 2019. In this paper 21 lightweight block ciphers, 19 lightweight stream ciphers, 9 lightweight hash functions and 5 variants of elliptic curve cryptography (ECC) has been discussed i.e. in total 54 LWC primitives are compared in their respective classes. The comparison of the ciphers has been carried out in terms of chip area, energy and power, hardware and software efficiency, throughput, latency and figure of merit (FoM). Based on the findings it can be observed that AES and ECC are the most suitable for used lightweight cryptographic primitives. Several open research problems in the field of lightweight cryptography have also been identified.
Multidimensional Systems and Signal Processing - Epileptic seizure detection from the brain EEG signals is an essential step for speeding up the diagnosis that assists researchers and medical... 相似文献
Wireless Personal Communications - Cloud is an environment where the resources are outsourced as service to the cloud consumers based on their demand. The cloud providers follows pay as you go... 相似文献
The effect of hydrogen on p-type Si/Mn and Si/Co Schottky diode has been investigated in present studies. The variations of I–V characteristics suggested that the rectifying act of these diodes change with variation of hydrogen pressure, which is due to the diffusion of hydrogen through the Mn and Co metal films up to Si surface or a creation of surface states at the interface. It is also observed that the effect of hydrogen found to be reverse in order for forward as well as reverse direction of current in Mn and Co deposited films on Si substrate, corresponding to anionic and protonic model of hydrogen interaction with metals. One can say that hydrogen plays an amphoteric role to neutralize either donors or acceptors level in semiconductors and metals. The Raman spectra of Si/Mn and Si/Co are taken and stoke lines link with the presence of hydrogen is observed. In this paper, we are presenting the role of hydrogen pressure on I–V characteristics at the interface of metal–semiconductor structure. 相似文献
Wireless Personal Communications - The Internet of Things (IoT) is a network formed by smart devices whose core contains embedded technology in order to collect sensory information and exchange it... 相似文献
We have presented an analysis of the gate leakage current of the IP3 static random access memory (SRAM) cell structure when the cell is in idle mode (performs no data read/write operations) and active mode (performs data read/write operations), along with the requirements for the overall standby leakage power, active write and read powers. A comparison has been drawn with existing SRAM cell structures, the conventional 6T, PP, P4 and P3 cells. At the supply voltage, VDD = 0.8 V, a reduction of 98%, 99%, 92% and 94% is observed in the gate leakage current in comparison with the 6T, PP, P4 and P3 SRAM cells, respectively, while at VDD = 0.7 V, it is 97%, 98%, 87% and 84%. A significant reduction is also observed in the overall standby leakage power by 56%, the active write power by 44% and the active read power by 99%, compared with the conventional 6T SRAM cell at VDD = 0.8 V, with no loss in cell stability and performance with a small area penalty. The simulation environment used for this work is 45 nm deep sub-micron complementary metal oxide semiconductor (CMOS) technology, tox = 2.4 nm, Vthn = 0.22 V, Vthp = 0.224 V, VDD = 0.7 V and 0.8 V, at T = 300 K. 相似文献