首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   966篇
  免费   66篇
  国内免费   2篇
电工技术   3篇
化学工业   332篇
金属工艺   8篇
机械仪表   21篇
建筑科学   33篇
矿业工程   3篇
能源动力   25篇
轻工业   343篇
水利工程   8篇
石油天然气   10篇
无线电   47篇
一般工业技术   98篇
冶金工业   23篇
原子能技术   3篇
自动化技术   77篇
  2024年   4篇
  2023年   16篇
  2022年   77篇
  2021年   85篇
  2020年   26篇
  2019年   43篇
  2018年   38篇
  2017年   38篇
  2016年   41篇
  2015年   35篇
  2014年   50篇
  2013年   66篇
  2012年   77篇
  2011年   80篇
  2010年   54篇
  2009年   38篇
  2008年   55篇
  2007年   52篇
  2006年   33篇
  2005年   29篇
  2004年   22篇
  2003年   17篇
  2002年   9篇
  2001年   6篇
  2000年   4篇
  1999年   3篇
  1998年   4篇
  1997年   5篇
  1996年   3篇
  1995年   1篇
  1994年   6篇
  1993年   6篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1987年   2篇
  1983年   2篇
  1980年   1篇
  1974年   1篇
排序方式: 共有1034条查询结果,搜索用时 15 毫秒
61.
Atopic dermatitis (AD) is a common relapsing inflammatory skin disorder characterized by immune-mediated inflammation and epidermal barrier dysfunction. The pathogenesis of AD is multifactorial and has not been fully elucidated to date. This study aimed to evaluate whether serum IgG from adult AD patients could modulate the thymic maturation of IL-22-producing T cells and CLA+ T cells of non-atopic infants. Given that miRNAs regulate immune response genes, we evaluated whether miRNA expression is also altered in cultured thymocytes. Thymocytes were cultured with purified IgG from AD patients or control conditions (mock, Intravenous-IgG (IVIg), non-atopic IgG, or atopic non-AD IgG). Using flow cytometry analysis, we assessed the expression of CLA and intracellular levels of IL-4, IFN-γ, and IL-22 on double-positive T cells (DP T), CD4 T cells, or CD8 T cells. We also investigated the frequency of IgG isotypes and their direct interaction with the thymic T cells membrane. The miRNA profiles were evaluated by the Illumina small RNA-seq approach. MiRNA target gene prediction and enrichment analyses were performed using bioinformatics. Increased frequencies of IL-22 and CLA+ producing CD4+ T cells cultured with IgG of AD patients was seen in non-atopic infant thymocytes compared to all control conditions. No alterations were observed in the frequency of IgG isotypes among evaluated IgG pools. Evidence for a direct interaction between IgG and thymic DP T, CD4 T, and CD8 T cells is presented. The small RNA-seq analysis identified ten mature miRNAs that were modulated by AD IgG compared to mock condition (miR-181b-5p, hsa-miR-130b-3p, hsa-miR-26a-5p, hsa-miR-4497, has-miR-146a, hsa-let-7i-5p, hsa-miR-342-3p, has-miR-148a-3p, has-miR-92a and has-miR-4492). The prediction of the targetome of the seven dysregulated miRNAs between AD and mock control revealed 122 putative targets, and functional and pathway enrichment analyses were performed. Our results enhance our understanding of the mechanism by which IgG can collaborate in thymic T cells in the setting of infant AD.  相似文献   
62.
The circadian clock (CC) is a daily system that regulates the oscillations of physiological processes and can respond to the external environment in order to maintain internal homeostasis. For the functioning of the CC, the clock genes (CG) act in different metabolic pathways through the clock-controlled genes (CCG), providing cellular regulation. The CC’s interruption can result in the development of different diseases, such as neurodegenerative and metabolic disorders, as well as cancer. Leukemias correspond to a group of malignancies of the blood and bone marrow that occur when alterations in normal cellular regulatory processes cause the uncontrolled proliferation of hematopoietic stem cells. This review aimed to associate a deregulated CC with the manifestation of leukemia, looking for possible pathways involving CG and their possible role as leukemic biomarkers.  相似文献   
63.
This work describes the preparation of thermosensitive chitosan-graft-poly(N-vinylcaprolactam) nanoparticles by ionic gelation and their potential use as a controlled drug delivery system, using doxorubicin as a model drug. A systematic study of the effect of the main processing parameters on both the size and thermoresponsive behavior of nanoparticles was investigated. The size of the particles is strongly dependent on the length of the poly(N-vinylcaprolactam) grafted chains and the concentration of the copolymer and crosslinking agent solutions. The molecular structure of the copolymer plays an essential role in the phase transition temperature of the particles, which decreases with the length of PVCL grafted chain. The system displayed proper drug-association parameters, and the drug-loaded nanoparticles exhibited dose-dependent cytotoxicity. A significant increase in the doxorubicin delivery rate was observed above the phase transition temperature (40 °C). These features indicate that these nanoparticles are suitable for the development of a new thermally controlled anti-cancer drug delivery system. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47831.  相似文献   
64.
Recent advances in lignocellulosic biomass valorization for producing fuels and commodities (olefins and BTX aromatics) are gathered in this paper, with a focus on the conversion of bio-oil (produced by fast pyrolysis of biomass). The main valorization routes are: (i) conditioning of bio-oil (by esterification, aldol condensation, ketonization, in situ cracking, and mild hydrodeoxygenation) for its use as a fuel or stable raw material for further catalytic processing; (ii) production of fuels by deep hydrodeoxygenation; (iii) ex situ catalytic cracking (in line) of the volatiles produced in biomass pyrolysis, aimed at the selective production of olefins and aromatics; (iv) cracking of raw bio-oil in units designed with specific objectives concerning selectivity; and (v) processing in fluidized bed catalytic cracking (FCC) units. This review deals with the technological evolution of these routes, in terms of catalysts, reaction conditions, reactors, and product yields. A study has been carried out on the current state-of-knowledge of the technological capacity, advantages and disadvantages of the different routes, as well as on the prospects for the implementation of each route within the scope of the Sustainable Refinery. © 2018 Society of Chemical Industry  相似文献   
65.
Nanostructuring of ultrathin HfO2 films deposited on GaAs (001) substrates by high-resolution Lloyd's mirror laser interference nanolithography is described. Pattern transfer to the HfO2 film was carried out by reactive ion beam etching using CF4 and O2 plasmas. A combination of atomic force microscopy, high-resolution scanning electron microscopy, high-resolution transmission electron microscopy, and energy-dispersive X-ray spectroscopy microanalysis was used to characterise the various etching steps of the process and the resulting HfO2/GaAs pattern morphology, structure, and chemical composition. We show that the patterning process can be applied to fabricate uniform arrays of HfO2 mesa stripes with tapered sidewalls and linewidths of 100 nm. The exposed GaAs trenches were found to be residue-free and atomically smooth with a root-mean-square line roughness of 0.18 nm after plasma etching.PACS: Dielectric oxides 77.84.Bw, Nanoscale pattern formation 81.16.Rf, Plasma etching 52.77.Bn, Fabrication of III-V semiconductors 81.05.Ea.  相似文献   
66.
The increasing importance of sustainability in energy production has led to a global commitment to the use of fuels derived from renewable biological sources, such as biodiesel produced from plant crops or biomass residues, that do not compete with human food for their production. For a biofuel to be considered biodiesel, it must satisfy the specifications described in the UNE 14214, with the UNE-EN 14103 referring to the determination of fatty acid methyl ester content. This standard applies gas chromatography as an analytical technique. Gas chromatography is a widely used technique in the analysis of methyl ester although it has a number of drawbacks such as: long analysis times, a high consumption of high-quality gases and internal standards, does not allow the analysis of different compounds with the same column, etc. From an industrial production point of view, is necessary to know the fatty acid methyl ester content in biodiesel samples quickly. This paper studies the development of an analytical method using Fourier transform infrared spectroscopy (FTIR) as alternative to gas chromatography (GC), since it is a simple, rapid, and precise analytical technique to quantify fatty acid methyl ester content in biofuel samples.  相似文献   
67.
68.
Surfactant adsorption onto solid surfaces is a major issue during surfactant flooding in enhanced oil recovery applications; it decreases the effectiveness of the chemical injection making the process uneconomical. Therefore, it was hypothesized that the adsorption of surfactant onto solid surfaces could be inhibited using a surfactant delivery system based on the complexation between the hydrophobic tail of anionic surfactants and β‐cyclodextrin (β‐CD). Proton nuclear magnetic resonance spectroscopy was used to confirm the complexation of sodium dodecyl sulfate (SDS)/β‐CD. Surface tension analysis was used to establish the stoichiometry of the complexation and the binding constant (Ka). Static adsorption testing was applied to determine the adsorption of surfactant onto different solids (sandstone, shale, and kaolinite). The release of the surfactant from the β‐CD cavity was qualitatively evaluated through bottle testing. The formation of the inclusion complex SDS/β‐CD with a 1:1 stoichiometry was confirmed. The Ka of the complexations increases as salinity and hardness concentration increases. The encapsulation of the surfactant into the β‐CD cavity decreases the adsorption of surfactant onto solid surfaces up to 79 %. Qualitative observations indicate that in the presence of solid adsorbents partially saturated with crude oil, the β‐CD cavity releases surfactant molecules, which migrate towards the oil–water interface.  相似文献   
69.
Type 2 diabetes mellitus patients are at significant risk of cardiovascular disease, however, the pathophysiology of these complications is complex and incompletely known in this population. The aim of this study was to compare the serum proteome of patients with type 2 diabetes mellitus presenting or not presenting cardiovascular disease with non-diabetic subjects to find essential proteins related to these cardiovascular complications. This cross-sectional study compares the serum proteome by a combination of protein depletion with 2D-DIGE (2-dimension Difference Gel Electrophoresis) methodology. The proteins differentially expressed were identified by MALDI TOF/TOF (Matrix-assisted laser desorption/ionization and Time-Of-Flight ion detector) or LC-MS/MS (Liquid Chromatography coupled to Mass-Mass Spectrometry). Type 2 diabetes mellitus patients with cardiovascular disease showed higher expression of plasma retinol binding protein and glutathione peroxidase-3 compared to those without cardiovascular disease and non-diabetic controls. These results show that proteins related to the inflammatory and redox state appear to play an important role in the pathogenesis of the cardiovascular disease in the type 2 diabetes mellitus patients.  相似文献   
70.
BACKGROUND: Efficient conversion of glucose/xylose mixtures from lignocellulose is necessary for commercially viable ethanol production. Oxygen and carbon sources are of paramount importance for ethanol yield. The aim of this work was to evaluate different glucose/xylose mixtures for ethanol production using S. cerevisiae ITV‐01 (wild type yeast) and P. stipitis NRRL Y‐7124 and the effect of supplying oxygen in separate and co‐culture processes. RESULTS: The complete conversion of a glucose/xylose mixture (75/30 g L?1) was obtained using P. stipitis NRRL Y‐7124 under aerobic conditions (0.6 vvm), the highest yield production being Yp/s = 0.46 g g?1, volumetric ethanol productivity Qpmax = 0.24 g L?1 h?1 and maximum ethanol concentration Pmax = 34.5 g L?1. In the co‐culture process and under aerobic conditions, incomplete conversion of glucose/xylose mixture was observed (20.4% residual xylose), with a maximum ethanol production of 30.3 g L?1, ethanol yield of 0.4 g g?1 and Qpmax = 1.26 g L?1 h?1. CONCLUSIONS: The oxygen present in the glucose/xylose mixture promotes complete sugar consumption by P. stipitis NRRL Y‐7124 resulting in ethanol production. However, in co‐culture with S. cerevisiae ITV‐01 under aerobic conditions, incomplete fermentation occurs that could be caused by oxygen limitation and ethanol inhibition by P. stipitis NRRL Y‐7124; nevertheless the volumetric ethanol productivity increases fivefold compared with separate culture. Copyright © 2011 Society of Chemical Industry  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号