首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16379篇
  免费   855篇
  国内免费   29篇
电工技术   180篇
综合类   45篇
化学工业   3503篇
金属工艺   322篇
机械仪表   338篇
建筑科学   730篇
矿业工程   47篇
能源动力   525篇
轻工业   1283篇
水利工程   124篇
石油天然气   60篇
武器工业   1篇
无线电   1193篇
一般工业技术   3162篇
冶金工业   2413篇
原子能技术   124篇
自动化技术   3213篇
  2023年   173篇
  2022年   377篇
  2021年   594篇
  2020年   389篇
  2019年   395篇
  2018年   507篇
  2017年   478篇
  2016年   555篇
  2015年   486篇
  2014年   623篇
  2013年   1128篇
  2012年   1006篇
  2011年   1195篇
  2010年   847篇
  2009年   769篇
  2008年   820篇
  2007年   807篇
  2006年   605篇
  2005年   532篇
  2004年   398篇
  2003年   399篇
  2002年   358篇
  2001年   223篇
  2000年   194篇
  1999年   213篇
  1998年   245篇
  1997年   212篇
  1996年   197篇
  1995年   196篇
  1994年   165篇
  1993年   164篇
  1992年   124篇
  1991年   80篇
  1990年   130篇
  1989年   124篇
  1988年   88篇
  1987年   94篇
  1986年   102篇
  1985年   111篇
  1984年   97篇
  1983年   82篇
  1982年   103篇
  1981年   98篇
  1980年   78篇
  1979年   76篇
  1978年   69篇
  1977年   79篇
  1976年   71篇
  1975年   47篇
  1974年   41篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
Huntington’s disease (HD) is a fatal neurodegenerative disorder caused by a polyglutamine expansion in the huntingtin protein. HD-related pathological remodelling has been reported in HD mouse models and HD carriers. In this study, we studied structural abnormalities in the optic nerve by employing Spectral Domain Optical Coherence Tomography (SD-OCT) in pre-symptomatic HD carriers of Caucasian origin. Transmission Electron Microscopy (TEM) was used to investigate ultrastructural changes in the optic nerve of the well-established R6/2 mouse model at the symptomatic stage of the disease. We found that pre-symptomatic HD carriers displayed a significant reduction in the retinal nerve fibre layer (RNFL) thickness, including specific quadrants: superior, inferior and temporal, but not nasal. There were no other significant irregularities in the GCC layer, at the macula level and in the optic disc morphology. The ultrastructural analysis of the optic nerve in R6/2 mice revealed a significant thinning of the myelin sheaths, with a lamellar separation of the myelin, and a presence of myelonoid bodies. We also found a significant reduction in the thickness of myelin sheaths in peripheral nerves within the choroids area. Those ultrastructural abnormalities were also observed in HD photoreceptor cells that contained severely damaged membrane disks, with evident vacuolisation and swelling. Moreover, the outer segment of retinal layers showed a progressive disintegration. Our study explored structural changes of the optic nerve in pre- and clinical settings and opens new avenues for the potential development of biomarkers that would be of great interest in HD gene therapies.  相似文献   
82.
Colloidal Mn (2+)-doped CdSe quantum dots showing long excitonic photoluminescence decay times of up to tau exc = 15 mus at temperatures over 100 K are described. These decay times exceed those of undoped CdSe quantum dots by approximately 10 (3) and are shown to arise from the creation of excitons by back energy transfer from excited Mn (2+) dopant ions. A kinetic model describing thermal equilibrium between Mn (2+ 4)T 1 and CdSe excitonic excited states reproduces the experimental observations and reveals that, for some quantum dots, excitons can emit with near unity probability despite being approximately 100 meV above the Mn (2+ 4)T 1 state. The effect of Mn (2+) doping on CdSe quantum dot luminescence at high temperatures is thus completely opposite from that at low temperatures described previously.  相似文献   
83.
Background: Clinical diagnosis of Alzheimer’s disease (AD) increasingly incorporates CSF biomarkers. However, due to the intrinsic variability of the immunodetection techniques used to measure these biomarkers, establishing in-house cutoffs defining the positivity/negativity of CSF biomarkers is recommended. However, the cutoffs currently published are usually reported by using cross-sectional datasets, not providing evidence about its intrinsic prognostic value when applied to real-world memory clinic cases. Methods: We quantified CSF Aβ1-42, Aβ1-40, t-Tau, and p181Tau with standard INNOTEST® ELISA and Lumipulse G® chemiluminescence enzyme immunoassay (CLEIA) performed on the automated Lumipulse G600II. Determination of cutoffs included patients clinically diagnosed with probable Alzheimer’s disease (AD, n = 37) and subjective cognitive decline subjects (SCD, n = 45), cognitively stable for 3 years and with no evidence of brain amyloidosis in 18F-Florbetaben-labeled positron emission tomography (FBB-PET). To compare both methods, a subset of samples for Aβ1-42 (n = 519), t-Tau (n = 399), p181Tau (n = 77), and Aβ1-40 (n = 44) was analyzed. Kappa agreement of single biomarkers and Aβ1-42/Aβ1-40 was evaluated in an independent group of mild cognitive impairment (MCI) and dementia patients (n = 68). Next, established cutoffs were applied to a large real-world cohort of MCI subjects with follow-up data available (n = 647). Results: Cutoff values of Aβ1-42 and t-Tau were higher for CLEIA than for ELISA and similar for p181Tau. Spearman coefficients ranged between 0.81 for Aβ1-40 and 0.96 for p181TAU. Passing–Bablok analysis showed a systematic and proportional difference for all biomarkers but only systematic for Aβ1-40. Bland–Altman analysis showed an average difference between methods in favor of CLEIA. Kappa agreement for single biomarkers was good but lower for the Aβ1-42/Aβ1-40 ratio. Using the calculated cutoffs, we were able to stratify MCI subjects into four AT(N) categories. Kaplan–Meier analyses of AT(N) categories demonstrated gradual and differential dementia conversion rates (p = 9.815−27). Multivariate Cox proportional hazard models corroborated these findings, demonstrating that the proposed AT(N) classifier has prognostic value. AT(N) categories are only modestly influenced by other known factors associated with disease progression. Conclusions: We established CLEIA and ELISA internal cutoffs to discriminate AD patients from amyloid-negative SCD individuals. The results obtained by both methods are not interchangeable but show good agreement. CLEIA is a good and faster alternative to manual ELISA for providing AT(N) classification of our patients. AT(N) categories have an impact on disease progression. AT(N) classifiers increase the certainty of the MCI prognosis, which can be instrumental in managing real-world MCI subjects.  相似文献   
84.
Brain stroke is a highly prevalent pathology and a main cause of disability among older adults. If not promptly treated with recanalization therapies, primary and secondary mechanisms of injury contribute to an increase in the lesion, enhancing neurological deficits. Targeting excitotoxicity and oxidative stress are very promising approaches, but only a few compounds have reached the clinic with relatively good positive outcomes. The exploration of novel targets might overcome the lack of clinical translation of previous efficient preclinical neuroprotective treatments. In this study, we examined the neuroprotective properties of 2-aminoethoxydiphenyl borate (2-APB), a molecule that interferes with intracellular calcium dynamics by the antagonization of several channels and receptors. In a permanent model of cerebral ischemia, we showed that 2-APB reduces the extent of the damage and preserves the functionality of the cortical territory, as evaluated by somatosensory evoked potentials (SSEPs). While in this permanent ischemia model, the neuroprotective effect exerted by the antioxidant scavenger cholesteronitrone F2 was associated with a reduction in reactive oxygen species (ROS) and better neuronal survival in the penumbra, 2-APB did not modify the inflammatory response or decrease the content of ROS and was mostly associated with a shortening of peri-infarct depolarizations, which translated into better cerebral blood perfusion in the penumbra. Our study highlights the potential of 2-APB to target spreading depolarization events and their associated inverse hemodynamic changes, which mainly contribute to extension of the area of lesion in cerebrovascular pathologies.  相似文献   
85.
Long-chain polyunsaturated fatty acids (LCPUFA), essential molecules whose precursors must be dietary supplied, are highly represented in the brain contributing to numerous neuronal processes. Recent findings have demonstrated that LCPUFA are represented in lipid raft microstructures, where they favor molecular interactions of signaling complexes underlying neuronal functionality. During aging, the brain lipid composition changes affecting the lipid rafts’ integrity and protein signaling, which may induce memory detriment. We investigated the effect of a n-3 LCPUFA-enriched diet on the cognitive function of 6- and 15-months-old female mice. Likewise, we explored the impact of dietary n-3 LCPUFAs on hippocampal lipid rafts, and their potential correlation with aging-induced neuroinflammation. Our results demonstrate that n-3 LCPUFA supplementation improves spatial and recognition memory and restores the expression of glutamate and estrogen receptors in the hippocampal lipid rafts of aged mice to similar profiles than young ones. Additionally, the n-3 LCPUFA-enriched diet stabilized the lipid composition of the old mice’s hippocampal lipid rafts to the levels of young ones and reduced the aged-induced neuroinflammatory markers. Hence, we propose that n-3 LCPUFA supplementation leads to beneficial cognitive performance by “rejuvenating” the lipid raft microenvironment that stabilizes the integrity and interactions of memory protein players embedded in these microdomains.  相似文献   
86.
Oxidized low-density lipoprotein (ox-LDL) is the most harmful form of cholesterol associated with vascular atherosclerosis and hepatic injury, mainly due to inflammatory cell infiltration and subsequent severe tissue injury. Lox-1 is the central ox-LDL receptor expressed in endothelial and immune cells, its activation regulating inflammatory cytokines and chemotactic factor secretion. Recently, a Lox-1 truncated protein isoform lacking the ox-LDL binding domain named LOXIN has been described. We have previously shown that LOXIN overexpression blocked Lox-1-mediated ox-LDL internalization in human endothelial progenitor cells in vitro. However, the functional role of LOXIN in targeting inflammation or tissue injury in vivo remains unknown. In this study, we investigate whether LOXIN modulated the expression of Lox-1 and reduced the inflammatory response in a high-fat-diet mice model. Results indicate that human LOXIN blocks Lox-1 mediated uptake of ox-LDL in H4-II-E-C3 cells. Furthermore, in vivo experiments showed that overexpression of LOXIN reduced both fatty streak lesions in the aorta and inflammation and fibrosis in the liver. These findings were associated with the down-regulation of Lox-1 in endothelial cells. Then, LOXIN prevents hepatic and aortic tissue damage in vivo associated with reduced Lox-1 expression in endothelial cells. We encourage future research to understand better the underlying molecular mechanisms and potential therapeutic use of LOXIN.  相似文献   
87.
Seed size is often considered to be an important trait for seed quality, i.e., vigour and germination performance. It is believed that seed size reflects the quantity of reserve material and thus the C and N sources available for post-germinative processes. However, mechanisms linking seed size and quality are poorly documented. In particular, specific metabolic changes when seed size varies are not well-known. To gain insight into this aspect, we examined seed size and composition across different accessions of barrel medic (Medicago truncatula Gaertn.) from the genetic core collection. We conducted multi-elemental analyses and isotope measurements, as well as exact mass GC–MS metabolomics. There was a systematic increase in N content (+0.17% N mg−1) and a decrease in H content (–0.14% H mg−1) with seed size, reflecting lower lipid and higher S-poor protein quantity. There was also a decrease in 2H natural abundance (δ2H), due to the lower prevalence of 2H-enriched lipid hydrogen atoms that underwent isotopic exchange with water during seed development. Metabolomics showed that seed size correlates with free amino acid and hexoses content, and anticorrelates with amino acid degradation products, disaccharides, malic acid and free fatty acids. All accessions followed the same trend, with insignificant differences in metabolic properties between them. Our results show that there is no general, proportional increase in metabolite pools with seed size. Seed size appears to be determined by metabolic balance (between sugar and amino acid degradation vs. utilisation for storage), which is in turn likely determined by phloem source metabolite delivery during seed development.  相似文献   
88.
89.
We report a very simple, rapid and reproducible method for the fabrication of anisotropic silver nanostars (AgNS) that can be successfully used as highly efficient SERS substrates for different bioanalytes, even in the case of a near-infra-red (NIR) excitation laser. The nanostars have been synthesized using the chemical reduction of Ag+ ions by trisodium citrate. This is the first research reporting the synthesis of AgNS using only trisodium citrate as a reducing and stabilizing agent. The key elements of this original synthesis procedure are rapid hydrothermal synthesis of silver nanostars followed by a cooling down procedure by immersion in a water bath. The synthesis was performed in a sealed bottom flask homogenously heated and brought to a boil in a microwave oven. After 60 s, the colloidal solution was cooled down to room temperature by immersion in a water bath at 35 °C. The as-synthesized AgNS were washed by centrifugation and used for SERS analysis of test molecules (methylene blue) as well as biological analytes: pharmaceutical compounds with various Raman cross sections (doxorubicin, atenolol & metoprolol), cell lysates and amino acids (methionine & cysteine). UV-Vis absorption spectroscopy, (Scanning) Transmission Electron Microscopy ((S)TEM) and Atomic Force Microscopy (AFM) have been employed for investigating nanostars’ physical properties.  相似文献   
90.
Zinc levels in serum and/or tissue are reported to be altered in melanoma with unknown effects on melanoma development and biology. The purpose of this study was to examine the effects of acute chelation of free intracellular zinc pools in melanoma cell lines Bowes and A375, as well as selected melanoma tissue explants with high or low intracellular free zinc. Zinc chelating agent TPEN at the concentration of 25 µM was employed during 48 h, which significantly reduced intracellular free zinc while decreasing melanoma cell proliferation, inducing G1/S arrest and cell damage leading to mitochondrial, caspase-dependent apoptosis. Chelation of free zinc was also associated with increased generation of superoxide in cell lines but not marked lysosomal membrane damage. Conversely, melanoma explant cultures mostly displayed time-dependent loss of lysosomal membrane integrity in the presence of slowly growing superoxide levels. Loss of free zinc-dependent p53 activity was similarly disparate in individual melanoma models. Surviving melanoma cells were arrested in the cell cycle, and varying proportions of them exhibited features characteristic of premature senescence, which increased in time despite zinc reloading. The present results show that melanoma cells with varying free zinc levels respond to its acute loss in a number of individual ways, reflecting activated mechanisms including oxidative stress, lysosomal damage, and p53 activity leading to heterogenous outcomes including cell death, transient, and/or permanent cell cycle arrest and premature senescence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号